Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.8 Q-3

Question Statement

Prove that:

2x+h=2x1+(ln⁑2)h+(ln⁑2)22!h2+(ln⁑2)33!h3+…2^{x+h} = 2^x { 1 + (\ln 2)h + \frac{(\ln 2)^2}{2!}h^2 + \frac{(\ln 2)^3}{3!}h^3 + \ldots }

Background and Explanation

This problem uses the Taylor series expansion, which is a method for expressing a function in terms of its derivatives at a specific point. The Taylor series for a function f(x)f(x) about a point xx is given by:

f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+fβ€²β€²β€²(x)3!h3+…f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots

In this problem, f(x)=2xf(x) = 2^x. We’ll compute its derivatives and substitute them into the Taylor series formula.


Solution

  1. Let the function be defined as:
    f(x)=2x.f(x) = 2^x.

  2. Differentiate the function repeatedly with respect to xx:

    • The first derivative:
      fβ€²(x)=2xln⁑2f'(x) = 2^x \ln 2
    • The second derivative:
      fβ€²β€²(x)=2x(ln⁑2)2f''(x) = 2^x (\ln 2)^2
    • The third derivative:
      fβ€²β€²β€²(x)=2x(ln⁑2)3f'''(x) = 2^x (\ln 2)^3
    • The fourth derivative:
      f(4)(x)=2x(ln⁑2)4f^{(4)}(x) = 2^x (\ln 2)^4
  3. Substitute these derivatives into the Taylor series formula:

    The general Taylor series is:

f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+fβ€²β€²β€²(x)3!h3+… f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots

For f(x)=2xf(x) = 2^x, this becomes:

2x+h=2x+2x(ln⁑2)1!h+2x(ln⁑2)22!h2+2x(ln⁑2)33!h3+… 2^{x+h} = 2^x + \frac{2^x (\ln 2)}{1!}h + \frac{2^x (\ln 2)^2}{2!}h^2 + \frac{2^x (\ln 2)^3}{3!}h^3 + \ldots
  1. Factor out 2x2^x to simplify:
2x+h=2x[1+(ln⁑2)h+(ln⁑2)22!h2+(ln⁑2)33!h3+…] 2^{x+h} = 2^x \left[ 1 + (\ln 2)h + \frac{(\ln 2)^2}{2!}h^2 + \frac{(\ln 2)^3}{3!}h^3 + \ldots \right]

Key Formulas or Methods Used

  • Taylor Series:
    f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+fβ€²β€²β€²(x)3!h3+…f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots

  • Derivative Rules for Exponential Functions:
    For f(x)=axf(x) = a^x, the derivative is fβ€²(x)=axln⁑af'(x) = a^x \ln a.


Summary of Steps

  1. Start with f(x)=2xf(x) = 2^x.
  2. Compute the derivatives:
    • fβ€²(x)=2xln⁑2f'(x) = 2^x \ln 2
    • fβ€²β€²(x)=2x(ln⁑2)2f''(x) = 2^x (\ln 2)^2
    • fβ€²β€²β€²(x)=2x(ln⁑2)3f'''(x) = 2^x (\ln 2)^3, etc.
  3. Substitute the derivatives into the Taylor series expansion.
  4. Simplify the expression and factor out 2x2^x.

Final result:

2x+h=2x[1+(ln⁑2)h+(ln⁑2)22!h2+(ln⁑2)33!h3+…]2^{x+h} = 2^x \left[ 1 + (\ln 2)h + \frac{(\ln 2)^2}{2!}h^2 + \frac{(\ln 2)^3}{3!}h^3 + \ldots \right]