Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.9 Q-1

Question Statement

Determine the intervals in which the function f(x)f(x) is increasing or decreasing within the given domains:

  1. f(x)=sin⁑xf(x) = \sin x, x∈[βˆ’Ο€,Ο€]x \in [-\pi, \pi]
  2. f(x)=cos⁑xf(x) = \cos x, x∈[βˆ’Ο€2,Ο€2]x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
  3. f(x)=4βˆ’x2f(x) = 4 - x^2, x∈[βˆ’2,2]x \in [-2, 2]
  4. f(x)=x2+3x+2f(x) = x^2 + 3x + 2, x∈[βˆ’4,1]x \in [-4, 1]

Background and Explanation

To analyze where a function is increasing or decreasing, we rely on its derivative fβ€²(x)f'(x):

  • If fβ€²(x)>0f'(x) > 0 in an interval, the function is increasing.
  • If fβ€²(x)<0f'(x) < 0 in an interval, the function is decreasing.

We compute the derivative for each function and evaluate its sign over the specified intervals.


Solution

1. f(x)=sin⁑xf(x) = \sin x, x∈[βˆ’Ο€,Ο€]x \in [-\pi, \pi]

  • Derivative: fβ€²(x)=cos⁑xf'(x) = \cos x

  • Analysis:

    • cos⁑x>0\cos x > 0 in (βˆ’Ο€2,Ο€2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), so f(x)f(x) is increasing here.
    • cos⁑x<0\cos x < 0 in (βˆ’Ο€,βˆ’Ο€2)\left(-\pi, -\frac{\pi}{2}\right) and (Ο€2,Ο€)\left(\frac{\pi}{2}, \pi\right), so f(x)f(x) is decreasing in these intervals.
  • Conclusion:

    • f(x)f(x) is increasing in [βˆ’Ο€2,Ο€2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].
    • f(x)f(x) is decreasing in [βˆ’Ο€,βˆ’Ο€2]βˆͺ[Ο€2,Ο€]\left[-\pi, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right].

2. f(x)=cos⁑xf(x) = \cos x, x∈[βˆ’Ο€2,Ο€2]x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

  • Derivative: fβ€²(x)=βˆ’sin⁑xf'(x) = -\sin x

  • Analysis:

    • sin⁑x>0\sin x > 0 in (0,Ο€2)(0, \frac{\pi}{2}), so fβ€²(x)<0f'(x) < 0 and f(x)f(x) is decreasing.
    • sin⁑x<0\sin x < 0 in (βˆ’Ο€2,0)\left(-\frac{\pi}{2}, 0\right), so fβ€²(x)>0f'(x) > 0 and f(x)f(x) is increasing.
  • Conclusion:

    • f(x)f(x) is increasing in [βˆ’Ο€2,0]\left[-\frac{\pi}{2}, 0\right].
    • f(x)f(x) is decreasing in [0,Ο€2]\left[0, \frac{\pi}{2}\right].

3. f(x)=4βˆ’x2f(x) = 4 - x^2, x∈[βˆ’2,2]x \in [-2, 2]

  • Derivative: fβ€²(x)=βˆ’2xf'(x) = -2x

  • Analysis:

    • fβ€²(x)>0f'(x) > 0 when x<0x < 0, so f(x)f(x) is increasing in (βˆ’2,0)(-2, 0).
    • fβ€²(x)<0f'(x) < 0 when x>0x > 0, so f(x)f(x) is decreasing in (0,2)(0, 2).
  • Conclusion:

    • f(x)f(x) is increasing in [βˆ’2,0][-2, 0].
    • f(x)f(x) is decreasing in [0,2][0, 2].

4. f(x)=x2+3x+2f(x) = x^2 + 3x + 2, x∈[βˆ’4,1]x \in [-4, 1]

  • Derivative: fβ€²(x)=2x+3f'(x) = 2x + 3

  • Analysis:

    • fβ€²(x)<0f'(x) < 0 when x<βˆ’32x < -\frac{3}{2}, so f(x)f(x) is decreasing in (βˆ’4,βˆ’32)(-4, -\frac{3}{2}).
    • fβ€²(x)>0f'(x) > 0 when x>βˆ’32x > -\frac{3}{2}, so f(x)f(x) is increasing in (βˆ’32,1)(-\frac{3}{2}, 1).
  • Conclusion:

    • f(x)f(x) is decreasing in [βˆ’4,βˆ’32][-4, -\frac{3}{2}].
    • f(x)f(x) is increasing in [βˆ’32,1]\left[-\frac{3}{2}, 1\right].

Key Formulas or Methods Used

  1. Derivative Test:
    • fβ€²(x)>0f'(x) > 0: Function is increasing.
    • fβ€²(x)<0f'(x) < 0: Function is decreasing.
  2. Basic derivatives:
    • ddx(sin⁑x)=cos⁑x\frac{d}{dx} (\sin x) = \cos x
    • ddx(cos⁑x)=βˆ’sin⁑x\frac{d}{dx} (\cos x) = -\sin x
    • ddx(4βˆ’x2)=βˆ’2x\frac{d}{dx} (4 - x^2) = -2x
    • ddx(x2+3x+2)=2x+3\frac{d}{dx} (x^2 + 3x + 2) = 2x + 3

Summary of Steps

  1. Compute the derivative fβ€²(x)f'(x) for the given function.
  2. Analyze the sign of fβ€²(x)f'(x) within the specified intervals.
  3. Identify where fβ€²(x)>0f'(x) > 0 (increasing) and fβ€²(x)<0f'(x) < 0 (decreasing).
  4. Write conclusions for the intervals of increase and decrease.