Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.9 Q-2

Question Statement

Find the extreme values of the following functions:

  1. f(x)=1βˆ’x3f(x) = 1 - x^3
  2. f(x)=x2βˆ’xβˆ’2f(x) = x^2 - x - 2
  3. f(x)=5x2βˆ’6x+2f(x) = 5x^2 - 6x + 2
  4. f(x)=3x2f(x) = 3x^2
  5. f(x)=3x2βˆ’4x+5f(x) = 3x^2 - 4x + 5
  6. f(x)=2x3βˆ’2x3βˆ’36x+3f(x) = 2x^3 - 2x^3 - 36x + 3
  7. f(x)=x4βˆ’4x2f(x) = x^4 - 4x^2

Background and Explanation

To find the extreme values (minima or maxima), we need to:

  1. Compute the first derivative fβ€²(x)f'(x) and set it to zero to find critical points.
  2. Use the second derivative test fβ€²β€²(x)f''(x) to determine the nature of these critical points:
    • If fβ€²β€²(x)>0f''(x) > 0, it indicates a relative minimum.
    • If fβ€²β€²(x)<0f''(x) < 0, it indicates a relative maximum.
    • If fβ€²β€²(x)=0f''(x) = 0, further investigation is needed.

Solution

1. f(x)=1βˆ’x3f(x) = 1 - x^3

  1. Compute fβ€²(x)=βˆ’3x2f'(x) = -3x^2.
  2. Set fβ€²(x)=0f'(x) = 0:
βˆ’3x2=0β€…β€ŠβŸΉβ€…β€Šx=0 -3x^2 = 0 \implies x = 0
  1. Compute fβ€²β€²(x)=βˆ’6xf''(x) = -6x. At x=0x = 0, fβ€²β€²(0)=0f''(0) = 0, so the second derivative test is inconclusive.
  2. Observing fβ€²(x)=βˆ’3x2f'(x) = -3x^2, it does not change sign at x=0x = 0. Thus, x=0x = 0 is a point of inflection, not an extremum.

2. f(x)=x2βˆ’xβˆ’2f(x) = x^2 - x - 2

  1. Compute fβ€²(x)=2xβˆ’1f'(x) = 2x - 1.
  2. Set fβ€²(x)=0f'(x) = 0:
2xβˆ’1=0β€…β€ŠβŸΉβ€…β€Šx=12 2x - 1 = 0 \implies x = \frac{1}{2}
  1. Compute fβ€²β€²(x)=2f''(x) = 2. Since fβ€²β€²(x)>0f''(x) > 0, x=12x = \frac{1}{2} is a relative minimum.
  2. Evaluate f(12)f\left(\frac{1}{2}\right):
f(12)=(12)2βˆ’12βˆ’2=14βˆ’12βˆ’2=βˆ’94 f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} - 2 = \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}

Result: Relative minimum at (12,βˆ’94)\left(\frac{1}{2}, -\frac{9}{4}\right).


3. f(x)=5x2βˆ’6x+2f(x) = 5x^2 - 6x + 2

  1. Compute fβ€²(x)=10xβˆ’6f'(x) = 10x - 6.
  2. Set fβ€²(x)=0f'(x) = 0:
10xβˆ’6=0β€…β€ŠβŸΉβ€…β€Šx=35 10x - 6 = 0 \implies x = \frac{3}{5}
  1. Compute fβ€²β€²(x)=10f''(x) = 10. Since fβ€²β€²(x)>0f''(x) > 0, x=35x = \frac{3}{5} is a relative minimum.
  2. Evaluate f(35)f\left(\frac{3}{5}\right):
f(35)=5(35)2βˆ’6(35)+2=95βˆ’185+2=15 f\left(\frac{3}{5}\right) = 5\left(\frac{3}{5}\right)^2 - 6\left(\frac{3}{5}\right) + 2 = \frac{9}{5} - \frac{18}{5} + 2 = \frac{1}{5}

Result: Relative minimum at (35,15)\left(\frac{3}{5}, \frac{1}{5}\right).


4. f(x)=3x2f(x) = 3x^2

  1. Compute fβ€²(x)=6xf'(x) = 6x.
  2. Set fβ€²(x)=0f'(x) = 0:
6x=0β€…β€ŠβŸΉβ€…β€Šx=0 6x = 0 \implies x = 0
  1. Compute fβ€²β€²(x)=6f''(x) = 6. Since fβ€²β€²(x)>0f''(x) > 0, x=0x = 0 is a relative minimum.
  2. Evaluate f(0)f(0):
f(0)=3(0)2=0 f(0) = 3(0)^2 = 0

Result: Relative minimum at (0,0)(0, 0).


5. f(x)=3x2βˆ’4x+5f(x) = 3x^2 - 4x + 5

  1. Compute fβ€²(x)=6xβˆ’4f'(x) = 6x - 4.
  2. Set fβ€²(x)=0f'(x) = 0:
6xβˆ’4=0β€…β€ŠβŸΉβ€…β€Šx=23 6x - 4 = 0 \implies x = \frac{2}{3}
  1. Compute fβ€²β€²(x)=6f''(x) = 6. Since fβ€²β€²(x)>0f''(x) > 0, x=23x = \frac{2}{3} is a relative minimum.
  2. Evaluate f(23)f\left(\frac{2}{3}\right):
f(23)=3(23)2βˆ’4(23)+5=43βˆ’83+5=113 f\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) + 5 = \frac{4}{3} - \frac{8}{3} + 5 = \frac{11}{3}

Result: Relative minimum at (23,113)\left(\frac{2}{3}, \frac{11}{3}\right).

Follow Same method for part vi and vii


Key Formulas or Methods Used

  1. First derivative test: Solve fβ€²(x)=0f'(x) = 0 to find critical points.
  2. Second derivative test: Use fβ€²β€²(x)f''(x) to determine the nature of critical points.
  3. Evaluating the function at critical points to find extreme values.

Summary of Steps

  1. Compute the first derivative fβ€²(x)f'(x) and solve fβ€²(x)=0f'(x) = 0.
  2. Use the second derivative fβ€²β€²(x)f''(x) to classify critical points.
  3. Evaluate f(x)f(x) at critical points to find the extreme values.