Question Statement
Find the extreme values of the following functions:
- f(x)=1βx3
- f(x)=x2βxβ2
- f(x)=5x2β6x+2
- f(x)=3x2
- f(x)=3x2β4x+5
- f(x)=2x3β2x3β36x+3
- f(x)=x4β4x2
Background and Explanation
To find the extreme values (minima or maxima), we need to:
- Compute the first derivative fβ²(x) and set it to zero to find critical points.
- Use the second derivative test fβ²β²(x) to determine the nature of these critical points:
- If fβ²β²(x)>0, it indicates a relative minimum.
- If fβ²β²(x)<0, it indicates a relative maximum.
- If fβ²β²(x)=0, further investigation is needed.
Solution
1. f(x)=1βx3
- Compute fβ²(x)=β3x2.
- Set fβ²(x)=0:
β3x2=0βΉx=0
- Compute fβ²β²(x)=β6x. At x=0, fβ²β²(0)=0, so the second derivative test is inconclusive.
- Observing fβ²(x)=β3x2, it does not change sign at x=0. Thus, x=0 is a point of inflection, not an extremum.
2. f(x)=x2βxβ2
- Compute fβ²(x)=2xβ1.
- Set fβ²(x)=0:
2xβ1=0βΉx=21β
- Compute fβ²β²(x)=2. Since fβ²β²(x)>0, x=21β is a relative minimum.
- Evaluate f(21β):
f(21β)=(21β)2β21ββ2=41ββ21ββ2=β49β
Result: Relative minimum at (21β,β49β).
3. f(x)=5x2β6x+2
- Compute fβ²(x)=10xβ6.
- Set fβ²(x)=0:
10xβ6=0βΉx=53β
- Compute fβ²β²(x)=10. Since fβ²β²(x)>0, x=53β is a relative minimum.
- Evaluate f(53β):
f(53β)=5(53β)2β6(53β)+2=59ββ518β+2=51β
Result: Relative minimum at (53β,51β).
4. f(x)=3x2
- Compute fβ²(x)=6x.
- Set fβ²(x)=0:
6x=0βΉx=0
- Compute fβ²β²(x)=6. Since fβ²β²(x)>0, x=0 is a relative minimum.
- Evaluate f(0):
f(0)=3(0)2=0
Result: Relative minimum at (0,0).
5. f(x)=3x2β4x+5
- Compute fβ²(x)=6xβ4.
- Set fβ²(x)=0:
6xβ4=0βΉx=32β
- Compute fβ²β²(x)=6. Since fβ²β²(x)>0, x=32β is a relative minimum.
- Evaluate f(32β):
f(32β)=3(32β)2β4(32β)+5=34ββ38β+5=311β
Result: Relative minimum at (32β,311β).
Follow Same method for part vi and vii
- First derivative test: Solve fβ²(x)=0 to find critical points.
- Second derivative test: Use fβ²β²(x) to determine the nature of critical points.
- Evaluating the function at critical points to find extreme values.
Summary of Steps
- Compute the first derivative fβ²(x) and solve fβ²(x)=0.
- Use the second derivative fβ²β²(x) to classify critical points.
- Evaluate f(x) at critical points to find the extreme values.