Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.9 Q-3

Question Statement

Find the maximum and minimum values of the function f(x)=sin⁑x+cos⁑xf(x) = \sin x + \cos x in the interval [0,2Ο€][0, 2\pi].


Background and Explanation

To solve this problem, we need to determine the critical points and evaluate the function at these points and the endpoints of the interval. Key concepts include:

  • Critical Points: These occur where the derivative of the function is zero or undefined.
  • Trigonometric Properties: Knowing that sin⁑x+cos⁑x\sin x + \cos x can be rewritten using trigonometric identities helps simplify computations.

Solution

We begin by analyzing the function f(x)=sin⁑x+cos⁑xf(x) = \sin x + \cos x.

Step 1: Simplify the Function

Using the identity sin⁑x+cos⁑x=2sin⁑(x+Ο€4)\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right), the function’s behavior depends on sin⁑(x+Ο€4)\sin\left(x + \frac{\pi}{4}\right), which oscillates between βˆ’1-1 and 11. However, we solve this using derivatives to verify.

Step 2: Find the Derivative

The derivative of f(x)f(x) is:

fβ€²(x)=cos⁑xβˆ’sin⁑xf'(x) = \cos x - \sin x

To find critical points, set fβ€²(x)=0f'(x) = 0:

cos⁑xβˆ’sin⁑x=0β‡’cos⁑x=sin⁑x\cos x - \sin x = 0 \quad \Rightarrow \quad \cos x = \sin x

This occurs when x=Ο€4x = \frac{\pi}{4} and x=5Ο€4x = \frac{5\pi}{4} in [0,2Ο€][0, 2\pi].

Step 3: Analyze the Function at Critical Points

At x=Ο€4x = \frac{\pi}{4}:

The value of f(x)f(x) is:

f(Ο€4)=sin⁑(Ο€4)+cos⁑(Ο€4)=12+12=2f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}

At x=5Ο€4x = \frac{5\pi}{4}:

The value of f(x)f(x) is:

f(5Ο€4)=sin⁑(5Ο€4)+cos⁑(5Ο€4)=βˆ’12βˆ’12=βˆ’2f\left(\frac{5\pi}{4}\right) = \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2}

Step 4: Evaluate at the Endpoints

At x=0x = 0:

f(0)=sin⁑(0)+cos⁑(0)=0+1=1f(0) = \sin(0) + \cos(0) = 0 + 1 = 1

At x=2Ο€x = 2\pi:

f(2Ο€)=sin⁑(2Ο€)+cos⁑(2Ο€)=0+1=1f(2\pi) = \sin(2\pi) + \cos(2\pi) = 0 + 1 = 1

Step 5: Determine Maximum and Minimum Values

From the above calculations:

  • The maximum value is 2\sqrt{2}, occurring at x=Ο€4x = \frac{\pi}{4}.
  • The minimum value is βˆ’2-\sqrt{2}, occurring at x=5Ο€4x = \frac{5\pi}{4}.

Key Formulas or Methods Used

  1. Derivative of trigonometric functions:
ddx(sin⁑x)=cos⁑x,ddx(cos⁑x)=βˆ’sin⁑x \frac{d}{dx} (\sin x) = \cos x, \quad \frac{d}{dx} (\cos x) = -\sin x
  1. Critical points occur where fβ€²(x)=0f'(x) = 0 or is undefined.
  2. Simplification using trigonometric identities:
sin⁑x+cos⁑x=2sin⁑(x+Ο€4) \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)

Summary of Steps

  1. Compute the derivative fβ€²(x)=cos⁑xβˆ’sin⁑xf'(x) = \cos x - \sin x.
  2. Solve fβ€²(x)=0f'(x) = 0 to find critical points: x=Ο€4,5Ο€4x = \frac{\pi}{4}, \frac{5\pi}{4}.
  3. Evaluate f(x)f(x) at critical points and endpoints (x=0,2Ο€x = 0, 2\pi).
  4. Compare values to determine:
    • Maximum value: 2\sqrt{2} at x=Ο€4x = \frac{\pi}{4}.
    • Minimum value: βˆ’2-\sqrt{2} at x=5Ο€4x = \frac{5\pi}{4}.