Question Statement
Find the change in y y y (δ y \delta y δy ) and the differential (d y dy d y ) in the following cases:
y = x 2 − 1 y = x^2 - 1 y = x 2 − 1 when x x x changes from 3 to 3.02.
y = x 2 + 2 x y = x^2 + 2x y = x 2 + 2 x when x x x changes from 2 to 1.8.
y = x y = \sqrt{x} y = x when x x x changes from 4 to 4.41.
Background and Explanation
To calculate δ y \delta y δy , we measure the actual change in y y y as x x x changes by a small amount δ x \delta x δ x . It involves substituting x + δ x x + \delta x x + δ x into the given equation of y y y .
To calculate d y dy d y , we use the concept of differentials, applying calculus to find the derivative of y y y with respect to x x x , then multiplying it by d x dx d x , where d x = δ x dx = \delta x d x = δ x .
Solution
Case 1: y = x 2 − 1 y = x^2 - 1 y = x 2 − 1 , x x x changes from 3 to 3.02
Step-by-Step:
Initial values:
x = 3 x = 3 x = 3 , δ x = d x = 3.02 − 3 = 0.02 \delta x = dx = 3.02 - 3 = 0.02 δ x = d x = 3.02 − 3 = 0.02 .
Calculate y y y at x = 3 x = 3 x = 3 :
y = x 2 − 1 = 3 2 − 1 = 8. y = x^2 - 1 = 3^2 - 1 = 8. y = x 2 − 1 = 3 2 − 1 = 8.
Calculate δ y \delta y δy :
Substitute x + δ x = 3.02 x + \delta x = 3.02 x + δ x = 3.02 into the equation:
y + δ y = ( x + δ x ) 2 − 1 = ( 3.02 ) 2 − 1. y + \delta y = (x + \delta x)^2 - 1 = (3.02)^2 - 1. y + δy = ( x + δ x ) 2 − 1 = ( 3.02 ) 2 − 1.
y + δ y = 9.1204 − 1 = 8.1204. y + \delta y = 9.1204 - 1 = 8.1204. y + δy = 9.1204 − 1 = 8.1204.
δ y = 8.1204 − 8 = 0.1204. \delta y = 8.1204 - 8 = 0.1204. δy = 8.1204 − 8 = 0.1204.
Calculate d y dy d y :
The derivative of y = x 2 − 1 y = x^2 - 1 y = x 2 − 1 is:
d y d x = 2 x . \frac{dy}{dx} = 2x. d x d y = 2 x .
Substitute x = 3 x = 3 x = 3 and d x = 0.02 dx = 0.02 d x = 0.02 :
d y = 2 x ⋅ d x = 2 ( 3 ) ( 0.02 ) = 0.12. dy = 2x \cdot dx = 2(3)(0.02) = 0.12. d y = 2 x ⋅ d x = 2 ( 3 ) ( 0.02 ) = 0.12.
Case 2: y = x 2 + 2 x y = x^2 + 2x y = x 2 + 2 x , x x x changes from 2 to 1.8
Step-by-Step:
Initial values:
x = 2 x = 2 x = 2 , δ x = d x = 1.8 − 2 = − 0.2 \delta x = dx = 1.8 - 2 = -0.2 δ x = d x = 1.8 − 2 = − 0.2 .
Calculate y y y at x = 2 x = 2 x = 2 :
y = x 2 + 2 x = 2 2 + 2 ( 2 ) = 4 + 4 = 8. y = x^2 + 2x = 2^2 + 2(2) = 4 + 4 = 8. y = x 2 + 2 x = 2 2 + 2 ( 2 ) = 4 + 4 = 8.
Calculate δ y \delta y δy :
Substitute x + δ x = 1.8 x + \delta x = 1.8 x + δ x = 1.8 into the equation:
y + δ y = ( x + δ x ) 2 + 2 ( x + δ x ) . y + \delta y = (x + \delta x)^2 + 2(x + \delta x). y + δy = ( x + δ x ) 2 + 2 ( x + δ x ) .
y + δ y = ( 1.8 ) 2 + 2 ( 1.8 ) = 3.24 + 3.6 = 6.84. y + \delta y = (1.8)^2 + 2(1.8) = 3.24 + 3.6 = 6.84. y + δy = ( 1.8 ) 2 + 2 ( 1.8 ) = 3.24 + 3.6 = 6.84.
δ y = 6.84 − 8 = − 1.16. \delta y = 6.84 - 8 = -1.16. δy = 6.84 − 8 = − 1.16.
Calculate d y dy d y :
The derivative of y = x 2 + 2 x y = x^2 + 2x y = x 2 + 2 x is:
d y d x = 2 x + 2. \frac{dy}{dx} = 2x + 2. d x d y = 2 x + 2.
Substitute x = 2 x = 2 x = 2 and d x = − 0.2 dx = -0.2 d x = − 0.2 :
d y = ( 2 x + 2 ) ⋅ d x = ( 2 ( 2 ) + 2 ) ( − 0.2 ) = 6 ( − 0.2 ) = − 1.2. dy = (2x + 2) \cdot dx = (2(2) + 2)(-0.2) = 6(-0.2) = -1.2. d y = ( 2 x + 2 ) ⋅ d x = ( 2 ( 2 ) + 2 ) ( − 0.2 ) = 6 ( − 0.2 ) = − 1.2.
Case 3: y = x y = \sqrt{x} y = x , x x x changes from 4 to 4.41
Step-by-Step:
Initial values:
x = 4 x = 4 x = 4 , δ x = d x = 4.41 − 4 = 0.41 \delta x = dx = 4.41 - 4 = 0.41 δ x = d x = 4.41 − 4 = 0.41 .
Calculate y y y at x = 4 x = 4 x = 4 :
y = x = 4 = 2. y = \sqrt{x} = \sqrt{4} = 2. y = x = 4 = 2.
Calculate δ y \delta y δy :
Substitute x + δ x = 4.41 x + \delta x = 4.41 x + δ x = 4.41 into the equation:
y + δ y = x + δ x = 4.41 . y + \delta y = \sqrt{x + \delta x} = \sqrt{4.41}. y + δy = x + δ x = 4.41 .
y + δ y = 2.1. y + \delta y = 2.1. y + δy = 2.1.
δ y = 2.1 − 2 = 0.1. \delta y = 2.1 - 2 = 0.1. δy = 2.1 − 2 = 0.1.
Calculate d y dy d y :
The derivative of y = x y = \sqrt{x} y = x is:
d y d x = 1 2 x . \frac{dy}{dx} = \frac{1}{2\sqrt{x}}. d x d y = 2 x 1 .
Substitute x = 4 x = 4 x = 4 and d x = 0.41 dx = 0.41 d x = 0.41 :
d y = 1 2 x ⋅ d x = 1 2 4 ⋅ 0.41 = 1 4 ⋅ 0.41 = 0.1025. dy = \frac{1}{2\sqrt{x}} \cdot dx = \frac{1}{2\sqrt{4}} \cdot 0.41 = \frac{1}{4} \cdot 0.41 = 0.1025. d y = 2 x 1 ⋅ d x = 2 4 1 ⋅ 0.41 = 4 1 ⋅ 0.41 = 0.1025.
δ y = f ( x + δ x ) − f ( x ) \delta y = f(x + \delta x) - f(x) δy = f ( x + δ x ) − f ( x ) : Actual change in y y y .
d y = d y d x ⋅ d x dy = \frac{dy}{dx} \cdot dx d y = d x d y ⋅ d x : Differential approximation of change in y y y .
Derivatives:
d d x ( x 2 ) = 2 x \frac{d}{dx}(x^2) = 2x d x d ( x 2 ) = 2 x
d d x ( x 2 + 2 x ) = 2 x + 2 \frac{d}{dx}(x^2 + 2x) = 2x + 2 d x d ( x 2 + 2 x ) = 2 x + 2
d d x ( x ) = 1 2 x \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} d x d ( x ) = 2 x 1
Summary of Steps
Calculate δ x \delta x δ x from the given x x x values.
Find the original y y y using the given equation.
Substitute x + δ x x + \delta x x + δ x into the equation to compute δ y \delta y δy .
Use derivatives to calculate d y dy d y as an approximation for δ y \delta y δy .
Compare results of δ y \delta y δy and d y dy d y .