Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.1 Q-1

Question Statement

Find the change in yy (δy\delta y) and the differential (dydy) in the following cases:

  1. y=x21y = x^2 - 1 when xx changes from 3 to 3.02.
  2. y=x2+2xy = x^2 + 2x when xx changes from 2 to 1.8.
  3. y=xy = \sqrt{x} when xx changes from 4 to 4.41.

Background and Explanation

To calculate δy\delta y, we measure the actual change in yy as xx changes by a small amount δx\delta x. It involves substituting x+δxx + \delta x into the given equation of yy.

To calculate dydy, we use the concept of differentials, applying calculus to find the derivative of yy with respect to xx, then multiplying it by dxdx, where dx=δxdx = \delta x.


Solution

Case 1: y=x21y = x^2 - 1, xx changes from 3 to 3.02

Step-by-Step:

  1. Initial values:
    x=3x = 3, δx=dx=3.023=0.02\delta x = dx = 3.02 - 3 = 0.02.

  2. Calculate yy at x=3x = 3:

y=x21=321=8. y = x^2 - 1 = 3^2 - 1 = 8.
  1. Calculate δy\delta y:
    Substitute x+δx=3.02x + \delta x = 3.02 into the equation:
y+δy=(x+δx)21=(3.02)21. y + \delta y = (x + \delta x)^2 - 1 = (3.02)^2 - 1. y+δy=9.12041=8.1204. y + \delta y = 9.1204 - 1 = 8.1204. δy=8.12048=0.1204. \delta y = 8.1204 - 8 = 0.1204.
  1. Calculate dydy:
    The derivative of y=x21y = x^2 - 1 is:
dydx=2x. \frac{dy}{dx} = 2x.

Substitute x=3x = 3 and dx=0.02dx = 0.02:

dy=2xdx=2(3)(0.02)=0.12. dy = 2x \cdot dx = 2(3)(0.02) = 0.12.

Case 2: y=x2+2xy = x^2 + 2x, xx changes from 2 to 1.8

Step-by-Step:

  1. Initial values:
    x=2x = 2, δx=dx=1.82=0.2\delta x = dx = 1.8 - 2 = -0.2.

  2. Calculate yy at x=2x = 2:

y=x2+2x=22+2(2)=4+4=8. y = x^2 + 2x = 2^2 + 2(2) = 4 + 4 = 8.
  1. Calculate δy\delta y:
    Substitute x+δx=1.8x + \delta x = 1.8 into the equation:
y+δy=(x+δx)2+2(x+δx). y + \delta y = (x + \delta x)^2 + 2(x + \delta x). y+δy=(1.8)2+2(1.8)=3.24+3.6=6.84. y + \delta y = (1.8)^2 + 2(1.8) = 3.24 + 3.6 = 6.84. δy=6.848=1.16. \delta y = 6.84 - 8 = -1.16.
  1. Calculate dydy:
    The derivative of y=x2+2xy = x^2 + 2x is:
dydx=2x+2. \frac{dy}{dx} = 2x + 2.

Substitute x=2x = 2 and dx=0.2dx = -0.2:

dy=(2x+2)dx=(2(2)+2)(0.2)=6(0.2)=1.2. dy = (2x + 2) \cdot dx = (2(2) + 2)(-0.2) = 6(-0.2) = -1.2.

Case 3: y=xy = \sqrt{x}, xx changes from 4 to 4.41

Step-by-Step:

  1. Initial values:
    x=4x = 4, δx=dx=4.414=0.41\delta x = dx = 4.41 - 4 = 0.41.

  2. Calculate yy at x=4x = 4:

y=x=4=2. y = \sqrt{x} = \sqrt{4} = 2.
  1. Calculate δy\delta y:
    Substitute x+δx=4.41x + \delta x = 4.41 into the equation:
y+δy=x+δx=4.41. y + \delta y = \sqrt{x + \delta x} = \sqrt{4.41}. y+δy=2.1. y + \delta y = 2.1. δy=2.12=0.1. \delta y = 2.1 - 2 = 0.1.
  1. Calculate dydy:
    The derivative of y=xy = \sqrt{x} is:
dydx=12x. \frac{dy}{dx} = \frac{1}{2\sqrt{x}}.

Substitute x=4x = 4 and dx=0.41dx = 0.41:

dy=12xdx=1240.41=140.41=0.1025. dy = \frac{1}{2\sqrt{x}} \cdot dx = \frac{1}{2\sqrt{4}} \cdot 0.41 = \frac{1}{4} \cdot 0.41 = 0.1025.

Key Formulas or Methods Used

  1. δy=f(x+δx)f(x)\delta y = f(x + \delta x) - f(x): Actual change in yy.
  2. dy=dydxdxdy = \frac{dy}{dx} \cdot dx: Differential approximation of change in yy.
  3. Derivatives:
    • ddx(x2)=2x\frac{d}{dx}(x^2) = 2x
    • ddx(x2+2x)=2x+2\frac{d}{dx}(x^2 + 2x) = 2x + 2
    • ddx(x)=12x\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}

Summary of Steps

  1. Calculate δx\delta x from the given xx values.
  2. Find the original yy using the given equation.
  3. Substitute x+δxx + \delta x into the equation to compute δy\delta y.
  4. Use derivatives to calculate dydy as an approximation for δy\delta y.
  5. Compare results of δy\delta y and dydy.