Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.1 Q-2

Question Statement

Find dydx\frac{dy}{dx} and dxdy\frac{dx}{dy} for the following equations using differentiation:

  1. xy+x=4xy + x = 4
  2. x2+2y2=16x^2 + 2y^2 = 16
  3. x4+y2=xy2x^4 + y^2 = xy^2
  4. xyβˆ’ln⁑x=cxy - \ln x = c

Background and Explanation

To solve these problems, we use the concept of implicit differentiation. This method involves differentiating both sides of an equation with respect to one variable (usually xx), treating other variables (like yy) as functions of xx. Key rules include:

  1. Product Rule: d(uv)=u,dv+v,dud(uv) = u , dv + v , du
  2. Chain Rule: Differentiating yy with respect to xx gives dydx\frac{dy}{dx}.

Solution

1. Equation: xy+x=4xy + x = 4

Step-by-step:

  1. Differentiate both sides:
d(xy+x)=d(4) d(xy + x) = d(4)

Using the product rule for xyxy:

d(xy)+dx=0β‡’x,dy+y,dx+dx=0 d(xy) + dx = 0 \quad \Rightarrow \quad x , dy + y , dx + dx = 0
  1. Rearrange to isolate dydy:
x,dy=βˆ’y,dxβˆ’dxβ‡’dy=βˆ’(y+1)xdx x , dy = -y , dx - dx \quad \Rightarrow \quad dy = -\frac{(y+1)}{x} dx
  1. Solve for dydx\frac{dy}{dx}:
dydx=βˆ’y+1x \frac{dy}{dx} = -\frac{y+1}{x}
  1. Find its reciprocal:
dxdy=βˆ’xy+1(validΒ forΒ yβ‰ βˆ’1). \frac{dx}{dy} = -\frac{x}{y+1} \quad \text{(valid for $y \neq -1$)}.

2. Equation: x2+2y2=16x^2 + 2y^2 = 16

Step-by-step:

  1. Differentiate both sides:
d(x2)+d(2y2)=d(16)β‡’2x,dx+4y,dy=0 d(x^2) + d(2y^2) = d(16) \quad \Rightarrow \quad 2x , dx + 4y , dy = 0
  1. Rearrange to isolate dydy:
4y,dy=βˆ’2x,dxβ‡’dy=βˆ’x2ydx 4y , dy = -2x , dx \quad \Rightarrow \quad dy = -\frac{x}{2y} dx
  1. Solve for dydx\frac{dy}{dx}:
dydx=βˆ’x2y \frac{dy}{dx} = -\frac{x}{2y}
  1. Find its reciprocal:
dxdy=βˆ’2yx. \frac{dx}{dy} = -\frac{2y}{x}.

3. Equation: x4+y2=xy2x^4 + y^2 = xy^2

Step-by-step:

  1. Differentiate both sides:
d(x4)+d(y2)=d(xy2)β‡’4x3,dx+2y,dy=x,d(y2)+y2,dx d(x^4) + d(y^2) = d(xy^2) \quad \Rightarrow \quad 4x^3 , dx + 2y , dy = x , d(y^2) + y^2 , dx

Using the product rule on xy2xy^2:

4x3,dx+2y,dy=2xy,dy+y2,dx 4x^3 , dx + 2y , dy = 2xy , dy + y^2 , dx
  1. Rearrange to isolate dydy:
2y,dyβˆ’2xy,dy=y2,dxβˆ’4x3,dx 2y , dy - 2xy , dy = y^2 , dx - 4x^3 , dx dy(2yβˆ’2xy)=dx(y2βˆ’4x3) dy \left( 2y - 2xy \right) = dx \left( y^2 - 4x^3 \right) dy=y2βˆ’4x32y(1βˆ’x)dx dy = \frac{y^2 - 4x^3}{2y(1-x)} dx
  1. Solve for dydx\frac{dy}{dx}:
dydx=y2βˆ’4x32y(1βˆ’x) \frac{dy}{dx} = \frac{y^2 - 4x^3}{2y(1-x)}
  1. Find its reciprocal:
dxdy=2y(xβˆ’1)4x3βˆ’y2. \frac{dx}{dy} = \frac{2y(x-1)}{4x^3 - y^2}.

4. Equation: xyβˆ’ln⁑x=cxy - \ln x = c

Step-by-step:

  1. Differentiate both sides:
d(xy)βˆ’d(ln⁑x)=d(c)β‡’x,dy+y,dxβˆ’1x,dx=0 d(xy) - d(\ln x) = d(c) \quad \Rightarrow \quad x , dy + y , dx - \frac{1}{x} , dx = 0
  1. Rearrange to isolate dydy:
x,dy=βˆ’y,dx+1x,dxβ‡’dy=1xβˆ’yxdx x , dy = -y , dx + \frac{1}{x} , dx \quad \Rightarrow \quad dy = \frac{\frac{1}{x} - y}{x} dx
  1. Solve for dydx\frac{dy}{dx}:
dydx=1βˆ’xyx2 \frac{dy}{dx} = \frac{1 - xy}{x^2}
  1. Find its reciprocal:
dxdy=x21βˆ’xy. \frac{dx}{dy} = \frac{x^2}{1 - xy}.

Key Formulas or Methods Used

  1. Product Rule: d(uv)=u,dv+v,dud(uv) = u , dv + v , du
  2. Chain Rule: ddx[y]=dydx\frac{d}{dx}[y] = \frac{dy}{dx}
  3. Implicit Differentiation: Differentiate with respect to one variable while treating others as functions of it.

Summary of Steps

  1. Differentiate the given equation using implicit differentiation.
  2. Apply product and chain rules wherever necessary.
  3. Rearrange the equation to isolate dy/dxdy/dx (or dx/dydx/dy).
  4. Simplify the result to find the required derivative.