Question Statement
Use differentials to approximate the following values:
17 4 \sqrt[4]{17} 4 17 β
( 31 ) 1 5 (31)^{\frac{1}{5}} ( 31 ) 5 1 β
cos β‘ ( 2 9 β ) \cos(29^\circ) cos ( 2 9 β )
sin β‘ ( 6 1 β ) \sin(61^\circ) sin ( 6 1 β )
Background and Explanation
Differentials are used to approximate the values of functions near a given point. The key idea is that for a small change in x x x (denoted Ξ΄ x \delta x Ξ΄ x or d x dx d x ), the change in y y y (denoted Ξ΄ y \delta y Ξ΄y or d y dy d y ) can be approximated as d y = f β² ( x ) d x dy = f'(x) dx d y = f β² ( x ) d x . This approach relies on linearization, where the tangent line approximates the curve near a point.
Solution
Part 1: Approximation of 17 4 \sqrt[4]{17} 4 17 β
Let y = x 1 / 4 y = x^{1/4} y = x 1/4 .
Choose x = 16 x = 16 x = 16 (a perfect fourth power near 17).
Ξ΄ x = 17 β 16 = 1 \delta x = 17 - 16 = 1 Ξ΄ x = 17 β 16 = 1 .
Derivative :
d y d x = 1 4 x β 3 / 4 . \frac{dy}{dx} = \frac{1}{4} x^{-3/4}. d x d y β = 4 1 β x β 3/4 .
Compute d y dy d y :
d y = 1 4 ( 16 ) β 3 / 4 β
1 = 1 4 β
8 = 1 32 = 0.03125. dy = \frac{1}{4} (16)^{-3/4} \cdot 1 = \frac{1}{4 \cdot 8} = \frac{1}{32} = 0.03125. d y = 4 1 β ( 16 ) β 3/4 β
1 = 4 β
8 1 β = 32 1 β = 0.03125.
Approximation :
17 4 β 16 4 + d y = 2 + 0.03125 = 2.03125. \sqrt[4]{17} \approx \sqrt[4]{16} + dy = 2 + 0.03125 = 2.03125. 4 17 β β 4 16 β + d y = 2 + 0.03125 = 2.03125.
Part 2: Approximation of ( 31 ) 1 5 (31)^{\frac{1}{5}} ( 31 ) 5 1 β
Let y = x 1 / 5 y = x^{1/5} y = x 1/5 .
Choose x = 32 x = 32 x = 32 (a perfect fifth power near 31).
Ξ΄ x = 31 β 32 = β 1 \delta x = 31 - 32 = -1 Ξ΄ x = 31 β 32 = β 1 .
Derivative :
d y d x = 1 5 x β 4 / 5 . \frac{dy}{dx} = \frac{1}{5} x^{-4/5}. d x d y β = 5 1 β x β 4/5 .
Compute d y dy d y :
d y = 1 5 ( 32 ) β 4 / 5 β
( β 1 ) = β 1 5 β
16 = β 1 80 = β 0.0125. dy = \frac{1}{5} (32)^{-4/5} \cdot (-1) = \frac{-1}{5 \cdot 16} = \frac{-1}{80} = -0.0125. d y = 5 1 β ( 32 ) β 4/5 β
( β 1 ) = 5 β
16 β 1 β = 80 β 1 β = β 0.0125.
Approximation :
( 31 ) 1 5 β ( 32 ) 1 5 + d y = 2 β 0.0125 = 1.9875. (31)^{\frac{1}{5}} \approx (32)^{\frac{1}{5}} + dy = 2 - 0.0125 = 1.9875. ( 31 ) 5 1 β β ( 32 ) 5 1 β + d y = 2 β 0.0125 = 1.9875.
Part 3: Approximation of cos β‘ ( 2 9 β ) \cos(29^\circ) cos ( 2 9 β )
Let y = cos β‘ x y = \cos x y = cos x .
Choose x = 3 0 β = Ο 6 x = 30^\circ = \frac{\pi}{6} x = 3 0 β = 6 Ο β .
Ξ΄ x = 2 9 β β 3 0 β = β 1 β = β Ο 180 \delta x = 29^\circ - 30^\circ = -1^\circ = -\frac{\pi}{180} Ξ΄ x = 2 9 β β 3 0 β = β 1 β = β 180 Ο β radians.
Derivative :
d y d x = β sin β‘ x . \frac{dy}{dx} = -\sin x. d x d y β = β sin x .
Compute d y dy d y :
d y = ( β sin β‘ ( 3 0 β ) ) ( β Ο 180 ) = sin β‘ ( 3 0 β ) β
Ο 180 = 1 2 β
Ο 180 = 0.0087. dy = (-\sin(30^\circ))(-\frac{\pi}{180}) = \sin(30^\circ) \cdot \frac{\pi}{180} = \frac{1}{2} \cdot \frac{\pi}{180} = 0.0087. d y = ( β sin ( 3 0 β )) ( β 180 Ο β ) = sin ( 3 0 β ) β
180 Ο β = 2 1 β β
180 Ο β = 0.0087.
Approximation :
cos β‘ ( 2 9 β ) β cos β‘ ( 3 0 β ) + d y = 0.866 + 0.0087 = 0.8747. \cos(29^\circ) \approx \cos(30^\circ) + dy = 0.866 + 0.0087 = 0.8747. cos ( 2 9 β ) β cos ( 3 0 β ) + d y = 0.866 + 0.0087 = 0.8747.
Part 4: Approximation of sin β‘ ( 6 1 β ) \sin(61^\circ) sin ( 6 1 β )
Let y = sin β‘ x y = \sin x y = sin x .
Choose x = 6 0 β = Ο 3 x = 60^\circ = \frac{\pi}{3} x = 6 0 β = 3 Ο β .
Ξ΄ x = 6 1 β β 6 0 β = 1 β = Ο 180 \delta x = 61^\circ - 60^\circ = 1^\circ = \frac{\pi}{180} Ξ΄ x = 6 1 β β 6 0 β = 1 β = 180 Ο β radians.
Derivative :
d y d x = cos β‘ x . \frac{dy}{dx} = \cos x. d x d y β = cos x .
Compute d y dy d y :
d y = cos β‘ ( 6 0 β ) β
Ο 180 = 1 2 β
Ο 180 = 0.0087. dy = \cos(60^\circ) \cdot \frac{\pi}{180} = \frac{1}{2} \cdot \frac{\pi}{180} = 0.0087. d y = cos ( 6 0 β ) β
180 Ο β = 2 1 β β
180 Ο β = 0.0087.
Approximation :
sin β‘ ( 6 1 β ) β sin β‘ ( 6 0 β ) + d y = 0.866 + 0.0087 = 0.8747. \sin(61^\circ) \approx \sin(60^\circ) + dy = 0.866 + 0.0087 = 0.8747. sin ( 6 1 β ) β sin ( 6 0 β ) + d y = 0.866 + 0.0087 = 0.8747.
Linear approximation: d y = f β² ( x ) d x dy = f'(x) dx d y = f β² ( x ) d x .
Derivatives:
d d x ( x n ) = n x n β 1 \frac{d}{dx}(x^n) = n x^{n-1} d x d β ( x n ) = n x n β 1 .
d d x ( sin β‘ x ) = cos β‘ x \frac{d}{dx}(\sin x) = \cos x d x d β ( sin x ) = cos x .
d d x ( cos β‘ x ) = β sin β‘ x \frac{d}{dx}(\cos x) = -\sin x d x d β ( cos x ) = β sin x .
Summary of Steps
Identify a nearby point where the function is easily computable.
Calculate the derivative of the function.
Use d y = f β² ( x ) d x dy = f'(x) dx d y = f β² ( x ) d x to estimate the change.
Add d y dy d y to the value of the function at the nearby point to approximate the desired value.