Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.1 Q-3

Question Statement

Use differentials to approximate the following values:

  1. 174\sqrt[4]{17}
  2. (31)15(31)^{\frac{1}{5}}
  3. cos⁑(29∘)\cos(29^\circ)
  4. sin⁑(61∘)\sin(61^\circ)

Background and Explanation

Differentials are used to approximate the values of functions near a given point. The key idea is that for a small change in xx (denoted Ξ΄x\delta x or dxdx), the change in yy (denoted Ξ΄y\delta y or dydy) can be approximated as dy=fβ€²(x)dxdy = f'(x) dx. This approach relies on linearization, where the tangent line approximates the curve near a point.


Solution

Part 1: Approximation of 174\sqrt[4]{17}

  1. Let y=x1/4y = x^{1/4}.

    • Choose x=16x = 16 (a perfect fourth power near 17).
    • Ξ΄x=17βˆ’16=1\delta x = 17 - 16 = 1.
  2. Derivative:

dydx=14xβˆ’3/4. \frac{dy}{dx} = \frac{1}{4} x^{-3/4}.
  1. Compute dydy:
dy=14(16)βˆ’3/4β‹…1=14β‹…8=132=0.03125. dy = \frac{1}{4} (16)^{-3/4} \cdot 1 = \frac{1}{4 \cdot 8} = \frac{1}{32} = 0.03125.
  1. Approximation:
174β‰ˆ164+dy=2+0.03125=2.03125. \sqrt[4]{17} \approx \sqrt[4]{16} + dy = 2 + 0.03125 = 2.03125.

Part 2: Approximation of (31)15(31)^{\frac{1}{5}}

  1. Let y=x1/5y = x^{1/5}.

    • Choose x=32x = 32 (a perfect fifth power near 31).
    • Ξ΄x=31βˆ’32=βˆ’1\delta x = 31 - 32 = -1.
  2. Derivative:

dydx=15xβˆ’4/5. \frac{dy}{dx} = \frac{1}{5} x^{-4/5}.
  1. Compute dydy:
dy=15(32)βˆ’4/5β‹…(βˆ’1)=βˆ’15β‹…16=βˆ’180=βˆ’0.0125. dy = \frac{1}{5} (32)^{-4/5} \cdot (-1) = \frac{-1}{5 \cdot 16} = \frac{-1}{80} = -0.0125.
  1. Approximation:
(31)15β‰ˆ(32)15+dy=2βˆ’0.0125=1.9875. (31)^{\frac{1}{5}} \approx (32)^{\frac{1}{5}} + dy = 2 - 0.0125 = 1.9875.

Part 3: Approximation of cos⁑(29∘)\cos(29^\circ)

  1. Let y=cos⁑xy = \cos x.

    • Choose x=30∘=Ο€6x = 30^\circ = \frac{\pi}{6}.
    • Ξ΄x=29βˆ˜βˆ’30∘=βˆ’1∘=βˆ’Ο€180\delta x = 29^\circ - 30^\circ = -1^\circ = -\frac{\pi}{180} radians.
  2. Derivative:

dydx=βˆ’sin⁑x. \frac{dy}{dx} = -\sin x.
  1. Compute dydy:
dy=(βˆ’sin⁑(30∘))(βˆ’Ο€180)=sin⁑(30∘)β‹…Ο€180=12β‹…Ο€180=0.0087. dy = (-\sin(30^\circ))(-\frac{\pi}{180}) = \sin(30^\circ) \cdot \frac{\pi}{180} = \frac{1}{2} \cdot \frac{\pi}{180} = 0.0087.
  1. Approximation:
cos⁑(29∘)β‰ˆcos⁑(30∘)+dy=0.866+0.0087=0.8747. \cos(29^\circ) \approx \cos(30^\circ) + dy = 0.866 + 0.0087 = 0.8747.

Part 4: Approximation of sin⁑(61∘)\sin(61^\circ)

  1. Let y=sin⁑xy = \sin x.

    • Choose x=60∘=Ο€3x = 60^\circ = \frac{\pi}{3}.
    • Ξ΄x=61βˆ˜βˆ’60∘=1∘=Ο€180\delta x = 61^\circ - 60^\circ = 1^\circ = \frac{\pi}{180} radians.
  2. Derivative:

dydx=cos⁑x. \frac{dy}{dx} = \cos x.
  1. Compute dydy:
dy=cos⁑(60∘)β‹…Ο€180=12β‹…Ο€180=0.0087. dy = \cos(60^\circ) \cdot \frac{\pi}{180} = \frac{1}{2} \cdot \frac{\pi}{180} = 0.0087.
  1. Approximation:
sin⁑(61∘)β‰ˆsin⁑(60∘)+dy=0.866+0.0087=0.8747. \sin(61^\circ) \approx \sin(60^\circ) + dy = 0.866 + 0.0087 = 0.8747.

Key Formulas or Methods Used

  1. Linear approximation: dy=fβ€²(x)dxdy = f'(x) dx.
  2. Derivatives:
    • ddx(xn)=nxnβˆ’1\frac{d}{dx}(x^n) = n x^{n-1}.
    • ddx(sin⁑x)=cos⁑x\frac{d}{dx}(\sin x) = \cos x.
    • ddx(cos⁑x)=βˆ’sin⁑x\frac{d}{dx}(\cos x) = -\sin x.

Summary of Steps

  1. Identify a nearby point where the function is easily computable.
  2. Calculate the derivative of the function.
  3. Use dy=fβ€²(x)dxdy = f'(x) dx to estimate the change.
  4. Add dydy to the value of the function at the nearby point to approximate the desired value.