Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.1 Q-4

Question Statement

Find the approximate increase in the volume of a cube if the length of each edge changes from 5 cm to 5.02 cm.


Background and Explanation

The formula for the volume of a cube is:
V=x3V = x^3
where xx represents the length of one edge of the cube.
To approximate the change in volume (dV\mathrm{d}V), we use the concept of differentials:
dV=dVdxβ‹…dx\mathrm{d}V = \frac{\mathrm{d}V}{\mathrm{d}x} \cdot \mathrm{d}x
This allows us to estimate the increase in volume based on a small change (dx\mathrm{d}x) in the edge length.


Solution

Step 1: Identify the Initial Edge Length and Change

  • The initial edge length of the cube is x=5,cmx = 5 , \text{cm}.
  • After the change, the edge length becomes 5.02,cm5.02 , \text{cm}.
  • The change in edge length is:
    dx=5.02βˆ’5=0.02,cm\mathrm{d}x = 5.02 - 5 = 0.02 , \text{cm}

Step 2: Differentiate the Volume Formula

The formula for the volume of a cube is V=x3V = x^3. Differentiating with respect to xx:
dVdx=3x2\frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2

Step 3: Apply the Differential Formula

Using the differential approximation formula dV=dVdxβ‹…dx\mathrm{d}V = \frac{\mathrm{d}V}{\mathrm{d}x} \cdot \mathrm{d}x, substitute:
dV=3x2β‹…dx\mathrm{d}V = 3x^2 \cdot \mathrm{d}x

Step 4: Substitute the Known Values

Substitute x=5,cmx = 5 , \text{cm}, dx=0.02,cm\mathrm{d}x = 0.02 , \text{cm}:

  1. Compute x2=52=25x^2 = 5^2 = 25.
  2. Multiply 3x2=3β‹…25=753x^2 = 3 \cdot 25 = 75.
  3. Multiply dV=75β‹…0.02=1.5\mathrm{d}V = 75 \cdot 0.02 = 1.5.

Thus, the approximate increase in volume is:
dVβ‰ˆ1.5,cm3\mathrm{d}V \approx 1.5 , \text{cm}^3.


Key Formulas or Methods Used

  1. Volume of a Cube:
    V=x3V = x^3
  2. Differential Formula for Volume:
    dV=dVdxβ‹…dx\mathrm{d}V = \frac{\mathrm{d}V}{\mathrm{d}x} \cdot \mathrm{d}x
  3. Derivative of Volume:
    dVdx=3x2\frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2

Summary of Steps

  1. Calculate the initial edge length x=5x = 5 and the change in edge length dx=0.02\mathrm{d}x = 0.02.
  2. Differentiate the volume formula V=x3V = x^3 to find dVdx=3x2\frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2.
  3. Use dV=3x2β‹…dx\mathrm{d}V = 3x^2 \cdot \mathrm{d}x to approximate the change in volume.
  4. Substitute x=5x = 5 and dx=0.02\mathrm{d}x = 0.02, and simplify to find dV\mathrm{d}V.
  5. The final result is dVβ‰ˆ1.5,cm3\mathrm{d}V \approx 1.5 , \text{cm}^3.