Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.1 Q-5

Question Statement

Find the approximate increase in the area of a circular disc if its diameter is increased from 44 cm to 44.4 cm.


Background and Explanation

To solve this problem, we use the formula for the area of a circle:
A=Ο€r2A = \pi r^2
where rr is the radius of the circle.
The radius is half the diameter, so any change in diameter directly affects the radius. The goal is to approximate the increase in area using the concept of differentials:
dA=dAdrβ‹…dr\mathrm{d}A = \frac{\mathrm{d}A}{\mathrm{d}r} \cdot \mathrm{d}r
This approach avoids recalculating the area from scratch by leveraging the small change (dr\mathrm{d}r) in radius.


Solution

Step 1: Identify the Initial Radius and Change in Radius

  • The initial diameter of the disc is 44,cm44 , \text{cm}.
  • The initial radius is:
    r=diameter2=442=22,cmr = \frac{\text{diameter}}{2} = \frac{44}{2} = 22 , \text{cm}
  • When the diameter increases to 44.4,cm44.4 , \text{cm}, the new radius becomes:
    r+dr=44.42=22.2,cmr + \mathrm{d}r = \frac{44.4}{2} = 22.2 , \text{cm}
  • The change in radius is:
    dr=22.2βˆ’22=0.2,cm\mathrm{d}r = 22.2 - 22 = 0.2 , \text{cm}

Step 2: Differentiate the Area Formula

The formula for the area of a circle is A=Ο€r2A = \pi r^2. Differentiating with respect to rr:
dAdr=2Ο€r\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r

Step 3: Apply the Differential Formula

Using the differential approximation formula dA=dAdrβ‹…dr\mathrm{d}A = \frac{\mathrm{d}A}{\mathrm{d}r} \cdot \mathrm{d}r, substitute:
dA=2Ο€rβ‹…dr\mathrm{d}A = 2\pi r \cdot \mathrm{d}r

Step 4: Substitute the Known Values

Substitute r=22,cmr = 22 , \text{cm}, dr=0.2,cm\mathrm{d}r = 0.2 , \text{cm}, and Ο€=3.14\pi = 3.14:
dA=2β‹…3.14β‹…22β‹…0.2\mathrm{d}A = 2 \cdot 3.14 \cdot 22 \cdot 0.2
Simplify step by step:

  1. Multiply 2β‹…3.14=6.282 \cdot 3.14 = 6.28.
  2. Multiply 6.28β‹…22=138.166.28 \cdot 22 = 138.16.
  3. Multiply 138.16β‹…0.2=27.632,cm2138.16 \cdot 0.2 = 27.632 , \text{cm}^2.

Thus, the approximate increase in the area is:
dAβ‰ˆ27.63,cm2\mathrm{d}A \approx 27.63 , \text{cm}^2.


Key Formulas or Methods Used

  1. Area of a Circle:
    A=Ο€r2A = \pi r^2
  2. Differential Formula for Area:
    dA=dAdrβ‹…dr\mathrm{d}A = \frac{\mathrm{d}A}{\mathrm{d}r} \cdot \mathrm{d}r
  3. Derivative of Area:
    dAdr=2Ο€r\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r

Summary of Steps

  1. Calculate the initial radius rr and the change in radius dr\mathrm{d}r.
  2. Differentiate the area formula A=Ο€r2A = \pi r^2 to find dAdr=2Ο€r\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r.
  3. Use dA=2Ο€rβ‹…dr\mathrm{d}A = 2\pi r \cdot \mathrm{d}r to approximate the change in area.
  4. Substitute the known values (r=22r = 22, dr=0.2\mathrm{d}r = 0.2, Ο€=3.14\pi = 3.14) and simplify to find dA\mathrm{d}A.
  5. The final result is dAβ‰ˆ27.63,cm2\mathrm{d}A \approx 27.63 , \text{cm}^2.