Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.2 Q-1

Question Statement

Evaluate the following indefinite integrals:

i. ∫(3x2βˆ’2x+1)dx\int\left(3 x^{2}-2 x+1\right) dx

ii. ∫(x+1x)dx,x>0\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) dx, x>0

iii. ∫x(x+1)dx,x>0\int x(\sqrt{x+1}) dx, x>0

iv. ∫(2x+3)12dx\int(2 x+3)^{\frac{1}{2}} dx

v. ∫(x+1)2dx\int(\sqrt{x}+1)^{2} dx

vi. ∫(xβˆ’1x)2dx\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} dx

vii. ∫3x+2xdx,x>0\int \frac{3 x+2}{\sqrt{x}} dx, x>0

viii. ∫y(y+1)ydy,y>0\int \frac{\sqrt{y}(y+1)}{y} dy, y>0

Use the page outline to jump to any part


Background and Explanation

To solve these indefinite integrals, we need to recall some basic integration rules and strategies:

  1. Power Rule for Integration: For any function of the form xnx^n, the integral is given by:
∫xndx=xn+1n+1+C,(forΒ nβ‰ βˆ’1) \int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad \text{(for } n \neq -1\text{)}
  1. Sum of Integrals: The integral of a sum of functions is the sum of their integrals:
∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx \int \left( f(x) + g(x) \right) dx = \int f(x) dx + \int g(x) dx
  1. Special Integrals:
    • For integrals involving square roots, we use the identity x=x1/2\sqrt{x} = x^{1/2}.
    • Use of substitution where necessary, such as when expressions can be simplified by expanding or factoring terms.

Solution

i. ∫(3x2βˆ’2x+1)dx\int\left(3 x^{2}-2 x+1\right) dx

Step-by-step:

  1. Split the integral:
∫(3x2βˆ’2x+1)dx=∫3x2dxβˆ’βˆ«2xdx+∫1dx \int\left(3 x^{2}-2 x+1\right) dx = \int 3 x^2 dx - \int 2x dx + \int 1 dx
  1. Integrate each term:

    • ∫3x2dx=3β‹…x33=x3\int 3 x^2 dx = 3 \cdot \frac{x^3}{3} = x^3
    • ∫2xdx=2β‹…x22=x2\int 2x dx = 2 \cdot \frac{x^2}{2} = x^2
    • ∫1dx=x\int 1 dx = x
  2. Combine results:

x3βˆ’x2+x+C \boxed{x^3 - x^2 + x + C}

ii. ∫(x+1x)dx,x>0\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) dx, x>0

Step-by-step:

  1. Write as powers of xx:
∫(x+1x)dx=∫x1/2dx+∫xβˆ’1/2dx \int\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx = \int x^{1/2} dx + \int x^{-1/2} dx
  1. Apply the power rule:

    • ∫x1/2dx=x3/23/2=23x3/2\int x^{1/2} dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2}
    • ∫xβˆ’1/2dx=x1/21/2=2x1/2\int x^{-1/2} dx = \frac{x^{1/2}}{1/2} = 2x^{1/2}
  2. Combine results:

23x3/2+2x1/2+C \boxed{\frac{2}{3} x^{3/2} + 2x^{1/2} + C}

iii. ∫x(x+1)dx,x>0\int x(\sqrt{x+1}) dx, x>0

Step-by-step:

  1. Expand the integrand:
∫x(x+1)dx=∫(x(x+1)1/2)dx=∫x3/2dx+∫xdx \int x(\sqrt{x+1}) dx = \int \left(x(x+1)^{1/2}\right) dx = \int x^{3/2} dx + \int x dx
  1. Integrate each term:

    • ∫x3/2dx=25x5/2\int x^{3/2} dx = \frac{2}{5} x^{5/2}
    • ∫xdx=x22\int x dx = \frac{x^2}{2}
  2. Combine results:

25x5/2+x22+C \boxed{\frac{2}{5} x^{5/2} + \frac{x^2}{2} + C}

iv. ∫(2x+3)12dx\int(2 x+3)^{\frac{1}{2}} dx

Step-by-step:

  1. Apply substitution u=2x+3u = 2x + 3, hence du=2dxdu = 2 dx:
12∫(u)1/2du \frac{1}{2} \int (u)^{1/2} du
  1. Integrate:

    • ∫u1/2du=23u3/2\int u^{1/2} du = \frac{2}{3} u^{3/2}
  2. Substitute back u=2x+3u = 2x + 3:

13(2x+3)3/2+C \boxed{\frac{1}{3} (2x+3)^{3/2} + C}

v. ∫(x+1)2dx\int(\sqrt{x}+1)^{2} dx

Step-by-step:

  1. Expand the integrand:
(x+1)2=x+2x1/2+1 (\sqrt{x}+1)^2 = x + 2x^{1/2} + 1
  1. Integrate each term:

    • ∫xdx=x22\int x dx = \frac{x^2}{2}
    • ∫2x1/2dx=43x3/2\int 2x^{1/2} dx = \frac{4}{3} x^{3/2}
    • ∫1dx=x\int 1 dx = x
  2. Combine results:

x22+43x3/2+x+C \boxed{\frac{x^2}{2} + \frac{4}{3} x^{3/2} + x + C}

vi. ∫(xβˆ’1x)2dx\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} dx

Step-by-step:

  1. Expand the integrand:
(xβˆ’1x)2=xβˆ’2+1x \left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2 = x - 2 + \frac{1}{x}
  1. Integrate each term:

    • ∫xdx=x22\int x dx = \frac{x^2}{2}
    • βˆ«βˆ’2dx=βˆ’2x\int -2 dx = -2x
    • ∫1xdx=ln⁑∣x∣\int \frac{1}{x} dx = \ln |x|
  2. Combine results:

x22βˆ’2x+ln⁑∣x∣+C \boxed{\frac{x^2}{2} - 2x + \ln |x| + C}

vii. ∫3x+2xdx,x>0\int \frac{3 x+2}{\sqrt{x}} dx, x>0

Step-by-step:

  1. Simplify:
∫3x+2xdx=∫(3x1/2+2xβˆ’1/2)dx \int \frac{3x+2}{\sqrt{x}} dx = \int \left( 3 x^{1/2} + 2 x^{-1/2} \right) dx
  1. Integrate each term:

    • ∫3x1/2dx=2x3/2\int 3 x^{1/2} dx = 2x^{3/2}
    • ∫2xβˆ’1/2dx=4x1/2\int 2 x^{-1/2} dx = 4x^{1/2}
  2. Combine results:

2x3/2+4x1/2+C \boxed{2x^{3/2} + 4x^{1/2} + C}

viii. ∫y(y+1)ydy,y>0\int \frac{\sqrt{y}(y+1)}{y} dy, y>0

Step-by-step:

  1. Simplify:
∫y(y+1)ydy=∫(y1/2+yβˆ’1/2)dy \int \frac{\sqrt{y}(y+1)}{y} dy = \int \left(y^{1/2} + y^{-1/2}\right) dy
  1. Integrate each term:

    • ∫y1/2dy=23y3/2\int y^{1/2} dy = \frac{2}{3} y^{3/2}
    • ∫yβˆ’1/2dy=2y1/2\int y^{-1/2} dy = 2y^{1/2}
  2. Combine results:

23y3/2+2y1/2+C \boxed{\frac{2}{3} y^{3/2} + 2y^{1/2} + C}

Key Formulas or Methods Used

  • Power Rule for Integration: ∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C
  • Sum of Integrals: ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx

Summary of Steps

  1. Split the integrand into manageable parts.
  2. Apply the power rule for each term.
  3. Combine the results and include the constant of integration, CC.