Question Statement
Evaluate the following integrals:
i. β«x+aβ+x+bβdxβx+a>0,x+b>0
ii. β«1+x21βx2β,dx
iii. β«x+aβ+xβdxβx>0,a>0
iv. β«(aβ2x)23β,dx
v. β«ex(1+ex)3β,dx
vi. β«sin((a+b)x),dx
vii. β«1βcos(2x)β,dx1βcos(2x)>0
viii. β«(lnx)Γx1β,dx
ix. β«sin2(x),dx
x. β«1+Cosx1βdx(2Οβ<x<2Οβ)
xi. β«ax2+2bx+Cax+bβdx
xii. β«cos3xsin2xdx
xiii. β«1+Cos2xCos2xβ1βdx
xiv. β«tan2xdx
Background and Explanation
To solve these integrals, you need knowledge of various integration techniques, including:
- Rationalizing integrals involving square roots.
- Using trigonometric identities and substitutions.
- Integration by substitution or direct application of basic formulas.
- Applying known integrals of logarithmic and trigonometric functions.
Solution
i. β«x+aβ+x+bβdxβ
Step 1: Rationalize the denominator by multiplying by the conjugate:
β«x+aβ+x+bβdxβΓx+aββx+bβx+aββx+bββ
This simplifies to:
β«(x+a)β(x+b)(x+aββx+bβ),dxβ=aβb1ββ«(x+aββx+bβ),dx
Step 2: Integrate each term:
aβb1β[23β(x+a)23βββ23β(x+b)23ββ]+C
Simplify to get the final answer:
3(aβb)2β[(x+a)23ββ(x+b)23β]+C
ii. β«1+x21βx2β,dx
Step 1: Break the fraction into two terms:
β«(1+x22ββ1+x21+x2β)dx
Step 2: Integrate each term:
2tanβ1(x)βx+C
iii. β«x+aβ+xβdxβ
Step 1: Rationalize the denominator by multiplying by the conjugate:
β«x+aβ+xβdxβΓx+aββxβx+aββxββ
This simplifies to:
a1ββ«(x+aββxβ),dx
Step 2: Integrate each term:
a1β[23β(x+a)23βββ23βx23ββ]+C
Simplify to get the final answer:
3a1β[(x+a)23ββx23β]+C
iv. β«(aβ2x)23β,dx
Step 1: Multiply and divide by -2:
β21ββ«(aβ2x)23β(β2)dx
Step 2: Integrate using the power rule:
β21ββ
25β(aβ2x)25ββ+C=β51β(aβ2x)25β+C
v. β«ex(1+ex)3β,dx
Step 1: Expand the numerator and simplify:
β«(eβx+3+3ex+e2x)dx
Step 2: Integrate each term:
βeβx+3x+3ex+2e2xβ+C
vi. β«sin((a+b)x),dx
Step 1: Use substitution:
a+b1ββ«sin((a+b)x)(a+b)dx
Step 2: Integrate:
βa+b1βcos((a+b)x)+C
vii. β«1βcos(2x)β,dx
Step 1: Use the identity 1βcos(2x)=2sin2(x):
β«2sin2(x)βdx=2ββ«sin(x)dx
Step 2: Integrate:
β2βcos(x)+C
viii. β«(lnx)Γx1β,dx
Step 1: Recognize that this integral is a standard form:
β«(lnx)Γx1β,dx=2(lnx)2β+C
Step 2: Simplify the result:
2(lnx)2β+C
ix. β«sin2x,dx
Step 1: Use the identity for sin2x:
sin2x=21βcos2xβ
Step 2: Substitute and simplify:
β«sin2x,dx=β«(21βcos2xβ)dx=21ββ«dxβ21ββ«cos2x,dx
Step 3: Integrate each term:
21βxβ21β2sin2xβ+C
Step 4: Simplify the final expression:
21βxβ41βsin2x+C
x. β«1+cosx1β,dx(2Οβ<x<2Οβ)
Step 1: Use the identity for 1+cosx:
1+cosx=2cos22xβ
Step 2: Substitute and simplify:
β«1+cosx1β,dx=β«2cos22xβ1β,dx=21ββ«sec22xβ,dx
Step 3: Integrate using the standard formula for sec2x:
21βtan2xβ+C
xi. β«ax2+2bx+Cax+bβ,dx
Step 1: Multiply and divide by 2:
β«ax2+2bx+Cax+bβ,dx=21ββ«ax2+2bx+C2(ax+b)β,dx
Step 2: Recognize the integral of the form dxdβlnβ£f(x)β£:
=21βlnβ£ax2+2bx+Cβ£+C1β
xii. β«cos3xsin2x,dx
Step 1: Use the identity for 2cosaxsinbx:
2cosaxsinbx=sin(a+b)+sin(aβb)
Step 2: Simplify the integral:
β«cos3xsin2x,dx=21ββ«[sin(5x)+sin(x)],dx
Step 3: Integrate each term:
=21β(5βcos5xβ+1βcosxβ)+C
Step 4: Simplify:
=β21β(5cos5xβ+cosx)+C
xiii. β«1+cos2xcos2xβ1β,dx
Step 1: Simplify using trigonometric identities:
1+cos2xcos2xβ1β=β1+cos2x1βcos2xβ
Step 2: Use the identity for cos2x:
=ββ«2cos2x2sin2xβ,dx=ββ«tan2x,dx
Step 3: Use the identity for tan2x:
=ββ«(sec2xβ1),dx
Step 4: Integrate:
=βtanx+x+C
xiv. β«tan2x,dx
Step 1: Use the identity for tan2x:
tan2x=sec2xβ1
Step 2: Integrate:
β«tan2x,dx=β«sec2x,dxββ«1,dx
Step 3: Perform the integration:
=tanxβx+C
- Rationalization: Used to simplify integrals involving square roots in the denominator.
- Power Rule: Used for integrating powers of x.
- Trigonometric Substitutions: Used in integrals involving trigonometric identities.
- Logarithmic Integration: Used to solve integrals involving logarithmic functions.
Summary of Steps
- Rationalize the denominator in integrals involving square roots.
- Break down complex fractions into simpler terms.
- Integrate each term separately.
- Use substitution where needed for trigonometric or logarithmic integrals.
- Simplify and apply the power rule where applicable.
- Combine terms and add the constant of integration, (C).