Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-11

Question Statement

Evaluate the following integral:

∫1+x1βˆ’x,dx\int \sqrt{\frac{1 + x}{1 - x}} , dx

Background and Explanation

This problem involves the integration of a rational function with a square root. The key to simplifying this integral is rationalizing the expression to convert the square roots into a more manageable form. We will use substitution and integration formulas to solve it. A helpful concept here is recognizing the appearance of inverse trigonometric functions like sinβ‘βˆ’1x\sin^{-1} x during the process.


Solution

Let’s solve the integral step by step:

  1. Express the integral: The given integral is:
∫1+x1βˆ’x,dx \int \sqrt{\frac{1 + x}{1 - x}} , dx
  1. Rationalize the expression: To simplify the square roots, multiply both the numerator and denominator by 1+x\sqrt{1 + x}:
=∫1+x1βˆ’xΓ—1+x1+x,dx = \int \frac{\sqrt{1 + x}}{\sqrt{1 - x}} \times \frac{\sqrt{1 + x}}{\sqrt{1 + x}} , dx
  1. Simplify: After multiplying, the integral becomes:
=∫(1+x)21βˆ’x2,dx = \int \frac{\sqrt{(1 + x)^2}}{\sqrt{1 - x^2}} , dx

This simplifies to:

=∫1+x1βˆ’x2,dx = \int \frac{1 + x}{\sqrt{1 - x^2}} , dx
  1. Split the integral: Now, split the integral into two parts:
=∫11βˆ’x2,dx+∫x1βˆ’x2,dx = \int \frac{1}{\sqrt{1 - x^2}} , dx + \int \frac{x}{\sqrt{1 - x^2}} , dx
  1. Solve the first part: The first integral is a standard integral:
∫11βˆ’x2,dx=sinβ‘βˆ’1x \int \frac{1}{\sqrt{1 - x^2}} , dx = \sin^{-1} x
  1. Solve the second part: The second part requires a substitution. Let’s use u=1βˆ’x2u = 1 - x^2, so du=βˆ’2x,dxdu = -2x , dx. This gives us:
=βˆ’12∫(1βˆ’x2)12(βˆ’2x),dx = -\frac{1}{2} \int (1 - x^2)^{\frac{1}{2}} (-2x) , dx

Simplifying the constants and solving the integral, we get:

βˆ’12(1βˆ’x2)12+C -\frac{1}{2} \left( 1 - x^2 \right)^{\frac{1}{2}} + C
  1. Combine results: Now, combine both parts of the solution:
sinβ‘βˆ’1xβˆ’1βˆ’x2+C \sin^{-1} x - \sqrt{1 - x^2} + C

Key Formulas or Methods Used

  • Standard Integrals:
    • ∫11βˆ’x2,dx=sinβ‘βˆ’1x\int \frac{1}{\sqrt{1 - x^2}} , dx = \sin^{-1} x
  • Rationalization:
    • Multiply both the numerator and denominator by 1+x\sqrt{1 + x} to simplify the expression.
  • Substitution:
    • Used substitution to simplify the second integral.

Summary of Steps

  1. Rationalize the given expression by multiplying both numerator and denominator by 1+x\sqrt{1 + x}.
  2. Simplify the resulting expression.
  3. Split the integral into two parts: ∫11βˆ’x2,dx\int \frac{1}{\sqrt{1 - x^2}} , dx and ∫x1βˆ’x2,dx\int \frac{x}{\sqrt{1 - x^2}} , dx.
  4. Solve the first part as sinβ‘βˆ’1x\sin^{-1} x.
  5. Solve the second part using substitution, resulting in βˆ’121βˆ’x2-\frac{1}{2} \sqrt{1 - x^2}.
  6. Combine the results: sinβ‘βˆ’1xβˆ’1βˆ’x2+C\sin^{-1} x - \sqrt{1 - x^2} + C.