Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-14

Question Statement

Evaluate the following integral:

dx76xx2\int \frac{dx}{\sqrt{7 - 6x - x^2}}

Background and Explanation

This problem involves solving an integral with a square root of a quadratic expression. The method to simplify this is by completing the square for the quadratic expression under the square root, which allows us to apply a standard trigonometric substitution to evaluate the integral.


Solution

Let’s solve the integral step by step:

  1. Rewrite the Integral: The given integral is:
dx76xx2 \int \frac{dx}{\sqrt{7 - 6x - x^2}}

First, we want to complete the square in the quadratic expression under the square root:

76xx2=(x2+6x7) 7 - 6x - x^2 = - (x^2 + 6x - 7)
  1. Complete the Square: We complete the square for the expression x2+6x7x^2 + 6x - 7. To do this, we take half of the coefficient of xx, square it, and add it and subtract it inside the expression:
x2+6x=(x+3)29 x^2 + 6x = (x + 3)^2 - 9

Now substitute this back into the expression:

(x2+6x7)=((x+3)297)=((x+3)216) - (x^2 + 6x - 7) = - \left( (x + 3)^2 - 9 - 7 \right) = - \left( (x + 3)^2 - 16 \right)

So the integral becomes:

dx(x+3)2+16=dx16(x+3)2 \int \frac{dx}{\sqrt{-(x + 3)^2 + 16}} = \int \frac{dx}{\sqrt{16 - (x + 3)^2}}
  1. Apply the Trigonometric Substitution: We recognize this as a standard form that can be solved using a trigonometric substitution. Let:
x+3=4sinθ x + 3 = 4 \sin \theta

This implies:

dx=4cosθ,dθ dx = 4 \cos \theta , d\theta

Substituting these into the integral:

4cosθ,dθ1616sin2θ=4cosθ,dθ4cosθ=dθ \int \frac{4 \cos \theta , d\theta}{\sqrt{16 - 16 \sin^2 \theta}} = \int \frac{4 \cos \theta , d\theta}{4 \cos \theta} = \int d\theta
  1. Integrate: The integral of dθd\theta is simply θ\theta. Therefore:
θ+C \theta + C
  1. Substitute Back in Terms of xx: Recall the substitution x+3=4sinθx + 3 = 4 \sin \theta, so:
sinθ=x+34 \sin \theta = \frac{x + 3}{4}

Therefore, the final result is:

sin1(x+34)+C \sin^{-1} \left( \frac{x + 3}{4} \right) + C

Key Formulas or Methods Used

  • Completing the Square:
    • To rewrite the quadratic expression as (x+3)216(x + 3)^2 - 16.
  • Trigonometric Substitution:
    • Substituting x+3=4sinθx + 3 = 4 \sin \theta, which simplifies the integral.
  • Inverse Sine:
    • The result of the integration leads to an inverse sine function.

Summary of Steps

  1. Rewrite the quadratic expression under the square root and complete the square.
  2. Use the trigonometric substitution x+3=4sinθx + 3 = 4 \sin \theta.
  3. Simplify the integral using the substitution.
  4. Integrate, which gives θ+C\theta + C.
  5. Substitute back in terms of xx to get the final result:
sin1(x+34)+C \sin^{-1} \left( \frac{x + 3}{4} \right) + C