Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-15

Question Statement

Evaluate the following integral:

cosxsinxlnsinx,dx\int \frac{\cos x}{\sin x \ln \sin x} , dx

Background and Explanation

This integral involves the use of substitution and logarithmic properties. The key to solving this is recognizing the structure of the integral, which suggests using a substitution for the logarithmic term lnsinx\ln \sin x. By doing so, we can simplify the integral into a more manageable form.


Solution

Let’s break down the solution step by step:

  1. Simplify the Integral: The given integral is:
cosxsinxlnsinx,dx \int \frac{\cos x}{\sin x \ln \sin x} , dx

We can rewrite the integrand as:

1lnsinxcosxsinx,dx \int \frac{1}{\ln \sin x} \cdot \frac{\cos x}{\sin x} , dx
  1. Substitute: Let’s introduce a substitution. Define:
u=lnsinx u = \ln \sin x

To find dudu, differentiate both sides with respect to xx:

du=cosxsinx,dx du = \frac{\cos x}{\sin x} , dx

Now the integral becomes:

1u,du \int \frac{1}{u} , du
  1. Integrate: The integral of 1u\frac{1}{u} is a standard logarithmic integral:
lnu+C \ln |u| + C
  1. Substitute Back: Recall that u=lnsinxu = \ln \sin x. Substituting this back into the result gives:
lnlnsinx+C \ln |\ln \sin x| + C

So, the final result is:

lnlnsinx+C \ln |\ln \sin x| + C

Key Formulas or Methods Used

  • Substitution:
    • u=lnsinxu = \ln \sin x, which simplifies the integral into a form we can easily integrate.
  • Logarithmic Integration:
    • The integral of 1u\frac{1}{u} is lnu+C\ln |u| + C.

Summary of Steps

  1. Simplify the integral into a form involving 1lnsinx\frac{1}{\ln \sin x}.
  2. Use the substitution u=lnsinxu = \ln \sin x and find du=cosxsinx,dxdu = \frac{\cos x}{\sin x} , dx.
  3. Integrate 1u\frac{1}{u} to get lnu+C\ln |u| + C.
  4. Substitute back u=lnsinxu = \ln \sin x to get the final result:
lnlnsinx+C \ln |\ln \sin x| + C