Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-16

Question Statement

Evaluate the following integral:

cosx(lnsinxsinx),dx\int \cos x \left( \frac{\ln \sin x}{\sin x} \right) , dx

Background and Explanation

This problem requires the use of substitution and integration by parts. The key is to recognize the logarithmic term lnsinx\ln \sin x and apply a substitution to simplify the integral. Once the substitution is made, the integral becomes easier to solve.


Solution

Let’s go through the solution step by step:

  1. Rewrite the Integral: The given integral is:
cosx(lnsinxsinx),dx \int \cos x \left( \frac{\ln \sin x}{\sin x} \right) , dx

We can rewrite the integrand as:

lnsinx×(cosxsinx),dx \int \ln \sin x \times \left( \frac{\cos x}{\sin x} \right) , dx
  1. Substitute: Let’s introduce a substitution. Define:
u=lnsinx u = \ln \sin x

To find dudu, differentiate both sides with respect to xx:

du=1sinxcosx,dx du = \frac{1}{\sin x} \cos x , dx

Now the integral becomes:

u,du \int u , du
  1. Integrate: The integral of uu is straightforward:
u22+C \frac{u^2}{2} + C
  1. Substitute Back: Recall that u=lnsinxu = \ln \sin x. Substituting this back into the result gives:
12(lnsinx)2+C \frac{1}{2} (\ln \sin x)^2 + C

So, the final result is:

12(lnsinx)2+C \frac{1}{2} (\ln \sin x)^2 + C

Key Formulas or Methods Used

  • Substitution:
    • u=lnsinxu = \ln \sin x, simplifying the integral into a form we can easily integrate.
  • Standard Integration:
    • The integral of uu is u22+C\frac{u^2}{2} + C.

Summary of Steps

  1. Rewrite the integral in terms of lnsinx\ln \sin x.
  2. Use the substitution u=lnsinxu = \ln \sin x and find du=cosxsinx,dxdu = \frac{\cos x}{\sin x} , dx.
  3. Integrate uu to get u22+C\frac{u^2}{2} + C.
  4. Substitute back u=lnsinxu = \ln \sin x to get the final result:
12(lnsinx)2+C \frac{1}{2} (\ln \sin x)^2 + C