Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-17

Question Statement

Evaluate the following integral:

x,dx4+2x+x2\int \frac{x , dx}{4 + 2x + x^2}

Background and Explanation

To solve this integral, we will need to apply a series of substitutions, including completing the square and trigonometric substitution. Understanding these techniques will help simplify the given rational expression into a solvable form.


Solution

Let’s go step-by-step through the solution:

  1. Rewrite the Denominator: Start by rewriting the denominator in a more manageable form:
4+2x+x2=(x2+2x+1)+3=(x+1)2+3 4 + 2x + x^2 = (x^2 + 2x + 1) + 3 = (x + 1)^2 + 3

The integral now becomes:

x,dx(x+1)2+3 \int \frac{x , dx}{(x + 1)^2 + 3}
  1. Substitute for x+1x + 1: Let:
x+1=3tanθ x + 1 = \sqrt{3} \tan \theta

This implies:

dx=3sec2θ,dθ dx = \sqrt{3} \sec^2 \theta , d\theta

Substituting this into the integral gives:

(3tanθ1)3sec2θ,dθ3(tan2θ+1) \int \frac{\left(\sqrt{3} \tan \theta - 1\right) \sqrt{3} \sec^2 \theta , d\theta}{3 (\tan^2 \theta + 1)}
  1. Simplify the Expression: Recall that tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta, so the integral simplifies to:
(3tanθ1)3sec2θ,dθ3sec2θ \int \frac{(\sqrt{3} \tan \theta - 1) \sqrt{3} \sec^2 \theta , d\theta}{3 \sec^2 \theta}

The sec2θ\sec^2 \theta terms cancel, and we are left with:

13(3tanθ1),dθ \frac{1}{\sqrt{3}} \int (\sqrt{3} \tan \theta - 1) , d\theta
  1. Integrate: Now, we can split the integral:
13(3tanθ,dθ1,dθ) \frac{1}{\sqrt{3}} \left( \int \sqrt{3} \tan \theta , d\theta - \int 1 , d\theta \right)

The integral of tanθ\tan \theta is lnsecθ\ln |\sec \theta|, and the integral of 1 is θ\theta. This gives:

13(3lnsecθθ)+C \frac{1}{\sqrt{3}} \left( \sqrt{3} \ln |\sec \theta| - \theta \right) + C
  1. Substitute Back θ\theta: We need to substitute back for θ\theta. Since:
x+1=3tanθ x + 1 = \sqrt{3} \tan \theta

we have:

tanθ=x+13,secθ=1+tan2θ=1+(x+1)23=3+(x+1)23 \tan \theta = \frac{x + 1}{\sqrt{3}}, \quad \sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \frac{(x + 1)^2}{3}} = \frac{\sqrt{3 + (x + 1)^2}}{\sqrt{3}}

Substituting these into the expression:

13(3ln3+(x+1)2313tan1(x+13))+C \frac{1}{\sqrt{3}} \left( \sqrt{3} \ln \left|\frac{\sqrt{3 + (x + 1)^2}}{\sqrt{3}}\right| - \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x + 1}{\sqrt{3}}\right) \right) + C
  1. Final Result: Simplifying further, we obtain:
ln3+(x+1)2313tan1(x+13)+C \ln \frac{\sqrt{3 + (x + 1)^2}}{\sqrt{3}} - \frac{1}{3} \tan^{-1} \left(\frac{x + 1}{\sqrt{3}}\right) + C

Key Formulas or Methods Used

  • Completing the Square: Used to rewrite the denominator in the form (x+1)2+3(x + 1)^2 + 3.
  • Trigonometric Substitution: x+1=3tanθx + 1 = \sqrt{3} \tan \theta to simplify the integral.
  • Standard Integrals:
    • tanθ,dθ=lnsecθ\int \tan \theta , d\theta = \ln |\sec \theta|
    • 1,dθ=θ\int 1 , d\theta = \theta

Summary of Steps

  1. Rewrite the denominator as (x+1)2+3(x + 1)^2 + 3.
  2. Use substitution x+1=3tanθx + 1 = \sqrt{3} \tan \theta and simplify the integral.
  3. Perform the integration, splitting the terms.
  4. Substitute back θ\theta using tanθ=x+13\tan \theta = \frac{x + 1}{\sqrt{3}} and secθ=3+(x+1)23\sec \theta = \frac{\sqrt{3 + (x + 1)^2}}{\sqrt{3}}.
  5. Simplify the result to obtain the final answer:
ln3+(x+1)2313tan1(x+13)+C \ln \frac{\sqrt{3 + (x + 1)^2}}{\sqrt{3}} - \frac{1}{3} \tan^{-1} \left(\frac{x + 1}{\sqrt{3}}\right) + C