Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-18

Question Statement

Evaluate the following integral:

x,dxx4+2x2+5\int \frac{x , dx}{x^4 + 2x^2 + 5}

Background and Explanation

This integral involves a rational function with a quartic denominator. To solve it, we will use trigonometric substitution. Specifically, we will recognize the structure of the denominator and apply the substitution x2+1=2tanθx^2 + 1 = 2 \tan \theta, which will transform the integral into a form that is easier to handle. Understanding trigonometric identities and the properties of sec2θ\sec^2 \theta and tan2θ\tan^2 \theta will be essential.


Solution

Let’s break down the solution step by step:

  1. Substitution: We begin by making the substitution x2+1=2tanθx^2 + 1 = 2 \tan \theta, which simplifies the denominator. This substitution implies:
2x,dx=2sec2θ,dθorx,dx=sec2θ,dθ 2x , dx = 2 \sec^2 \theta , d\theta \quad \text{or} \quad x , dx = \sec^2 \theta , d\theta

Substituting these into the integral, we get:

sec2θ,dθ(2tanθ)2+22 \int \frac{\sec^2 \theta , d\theta}{\left( 2 \tan \theta \right)^2 + 2^2}
  1. Simplify the Expression: Now simplify the expression:
=sec2θ,dθ4(tan2θ+1) = \int \frac{\sec^2 \theta , d\theta}{4 (\tan^2 \theta + 1)}

Since tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta, we can replace tan2θ+1\tan^2 \theta + 1 with sec2θ\sec^2 \theta to further simplify the integral:

=14sec2θ,dθsec2θ = \frac{1}{4} \int \frac{\sec^2 \theta , d\theta}{\sec^2 \theta}
  1. Final Simplification: The sec2θ\sec^2 \theta terms cancel out, leaving:
=141,dθ = \frac{1}{4} \int 1 , d\theta
  1. Integrate: The integral of 1 with respect to θ\theta is simply θ\theta. So, we get:
=14θ+C = \frac{1}{4} \theta + C
  1. Substitute Back for θ\theta: Now, recall the substitution x2+1=2tanθx^2 + 1 = 2 \tan \theta, so θ=tan1(x2+12)\theta = \tan^{-1} \left( \frac{x^2 + 1}{2} \right). Substituting this back into the expression:
=14tan1(x2+12)+C = \frac{1}{4} \tan^{-1} \left( \frac{x^2 + 1}{2} \right) + C

Key Formulas or Methods Used

  • Trigonometric Substitution: We used x2+1=2tanθx^2 + 1 = 2 \tan \theta to simplify the integral.
  • Basic Integration: The integral of 1,dθ1 , d\theta is θ\theta.
  • Trigonometric Identity: sec2θ=1+tan2θ\sec^2 \theta = 1 + \tan^2 \theta was used to simplify the integrand.

Summary of Steps

  1. Substitute x2+1=2tanθx^2 + 1 = 2 \tan \theta to simplify the denominator.
  2. Express x,dx=sec2θ,dθx , dx = \sec^2 \theta , d\theta for the differential.
  3. Simplify the integral to 141,dθ\frac{1}{4} \int 1 , d\theta.
  4. Integrate and obtain 14θ+C\frac{1}{4} \theta + C.
  5. Substitute back θ=tan1(x2+12)\theta = \tan^{-1} \left( \frac{x^2 + 1}{2} \right) to get the final result:
14tan1(x2+12)+C \frac{1}{4} \tan^{-1} \left( \frac{x^2 + 1}{2} \right) + C