Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-20

Question Statement

Evaluate the following integral:

∫x+2x+3,dx\int \frac{x+2}{\sqrt{x+3}} , dx

Background and Explanation

In this problem, we are tasked with evaluating an integral that involves a rational function with a square root. A useful technique here is to break down the expression in a way that allows us to integrate each part separately. We will manipulate the integrand into simpler terms and apply basic integration rules.


Solution

Let’s go through the solution step by step:

  1. Rewrite the Numerator: Start by rewriting the numerator x+2x + 2 as (x+3)βˆ’1(x + 3) - 1:
∫x+2x+3,dx=∫(x+3)βˆ’1x+3,dx \int \frac{x+2}{\sqrt{x+3}} , dx = \int \frac{(x+3) - 1}{\sqrt{x+3}} , dx
  1. Separate the Integral: Now, split the integral into two separate parts:
∫(x+3)x+3,dxβˆ’βˆ«1x+3,dx \int \frac{(x+3)}{\sqrt{x+3}} , dx - \int \frac{1}{\sqrt{x+3}} , dx
  1. Simplify Each Part: For the first integral, x+3x+3=x+3\frac{x+3}{\sqrt{x+3}} = \sqrt{x+3}. So, we have:
∫x+3,dx \int \sqrt{x+3} , dx

For the second part, 1x+3=(x+3)βˆ’12\frac{1}{\sqrt{x+3}} = (x+3)^{-\frac{1}{2}}. So, we have:

∫(x+3)βˆ’12,dx \int (x+3)^{-\frac{1}{2}} , dx
  1. Integrate Each Part:
    • The first integral is ∫x+3,dx\int \sqrt{x+3} , dx. To solve this, we use the power rule of integration. Recall that the power rule is ∫xn,dx=xn+1n+1\int x^n , dx = \frac{x^{n+1}}{n+1}. Here, n=12n = \frac{1}{2}, so:
∫x+3,dx=(x+3)3232=23(x+3)32 \int \sqrt{x+3} , dx = \frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} (x+3)^{\frac{3}{2}}
  • The second integral is ∫(x+3)βˆ’12,dx\int (x+3)^{-\frac{1}{2}} , dx. Applying the same power rule, we get:
∫(x+3)βˆ’12,dx=21(x+3)12=2x+3 \int (x+3)^{-\frac{1}{2}} , dx = \frac{2}{1} (x+3)^{\frac{1}{2}} = 2 \sqrt{x+3}
  1. Combine the Results: Now, subtract the results of the two integrals:
23(x+3)32βˆ’2x+3+C \frac{2}{3} (x+3)^{\frac{3}{2}} - 2 \sqrt{x+3} + C

This is the final result for the given integral.


Key Formulas or Methods Used

  • Power Rule of Integration:
    • For ∫xn,dx=xn+1n+1\int x^n , dx = \frac{x^{n+1}}{n+1}, where nβ‰ βˆ’1n \neq -1.
  • Simplification: Breaking the numerator into two terms allowed us to apply the power rule to each part separately.

Summary of Steps

  1. Rewrite x+2x + 2 as (x+3)βˆ’1(x + 3) - 1.
  2. Separate the integral into two parts:
    • ∫x+3,dx\int \sqrt{x+3} , dx
    • ∫(x+3)βˆ’12,dx\int (x+3)^{-\frac{1}{2}} , dx
  3. Integrate each part using the power rule:
    • ∫x+3,dx=23(x+3)32\int \sqrt{x+3} , dx = \frac{2}{3} (x+3)^{\frac{3}{2}}
    • ∫(x+3)βˆ’12,dx=2x+3\int (x+3)^{-\frac{1}{2}} , dx = 2 \sqrt{x+3}
  4. Combine the results:
23(x+3)32βˆ’2x+3+C \frac{2}{3} (x+3)^{\frac{3}{2}} - 2 \sqrt{x+3} + C