Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-22

Question Statement

Evaluate the integral:

∫3sin⁑x+cos⁑x,dx\int \frac{\sqrt{3}}{\sin x + \cos x} , dx

Background and Explanation

To solve this integral, we need to simplify the expression in the denominator. We can use trigonometric identities to rewrite the terms and make the integral easier to solve. Specifically, the sum of sine and cosine functions can be rewritten using a standard identity. This will help us transform the integral into a more familiar form, which can then be solved using basic integration techniques.


Solution

Here’s the step-by-step solution:

  1. Factor Out Constants: First, we factor out the constant 12\frac{1}{\sqrt{2}} to simplify the integral:
∫3sin⁑x+cos⁑x,dx=12∫2sin⁑x+cos⁑x2,dx \int \frac{\sqrt{3}}{\sin x + \cos x} , dx = \frac{1}{\sqrt{2}} \int \frac{\sqrt{2}}{\frac{\sin x + \cos x}{\sqrt{2}}} , dx
  1. Use Trigonometric Identity: Next, we apply the well-known trigonometric identity for sin⁑(x+Ο€4)\sin \left(x + \frac{\pi}{4}\right), which states:
sin⁑xcos⁑π4+cos⁑xsin⁑π4=sin⁑(x+Ο€4) \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = \sin \left(x + \frac{\pi}{4}\right)

Using this identity, we can rewrite the integral as:

∫1sin⁑xsin⁑π4+cos⁑xcos⁑π4,dx=∫1cos⁑(xβˆ’Ο€4),dx \int \frac{1}{\sin x \sin \frac{\pi}{4} + \cos x \cos \frac{\pi}{4}} , dx = \int \frac{1}{\cos \left(x - \frac{\pi}{4}\right)} , dx
  1. Rewrite Using the Secant Function: The expression 1cos⁑(xβˆ’Ο€4)\frac{1}{\cos \left(x - \frac{\pi}{4}\right)} is simply sec⁑(xβˆ’Ο€4)\sec \left(x - \frac{\pi}{4}\right). So the integral becomes:
∫sec⁑(xβˆ’Ο€4),dx \int \sec \left(x - \frac{\pi}{4}\right) , dx
  1. Integrate Using the Standard Formula: We now use the standard integral formula for sec⁑x\sec x, which is:
∫sec⁑x,dx=ln⁑∣sec⁑x+tan⁑x∣+C \int \sec x , dx = \ln \left| \sec x + \tan x \right| + C

Applying this formula to our integral:

ln⁑sec⁑(xβˆ’Ο€4)+tan⁑(xβˆ’Ο€4)+C \ln \sec \left(x - \frac{\pi}{4}\right) + \tan \left(x - \frac{\pi}{4}\right) + C

Key Formulas or Methods Used

  • Trigonometric Identity:
    • sin⁑(x+Ο€4)=sin⁑xcos⁑π4+cos⁑xsin⁑π4\sin \left(x + \frac{\pi}{4}\right) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}
  • Secant Function:
    • sec⁑(x)=1cos⁑(x)\sec(x) = \frac{1}{\cos(x)}
  • Standard Integral:
    • ∫sec⁑x,dx=ln⁑∣sec⁑x+tan⁑x∣+C\int \sec x , dx = \ln \left| \sec x + \tan x \right| + C

Summary of Steps

  1. Factor out the constant 12\frac{1}{\sqrt{2}} from the integrand.
  2. Apply the trigonometric identity to simplify the denominator.
  3. Rewrite the integral as ∫sec⁑(xβˆ’Ο€4),dx\int \sec(x - \frac{\pi}{4}) , dx.
  4. Use the standard integral formula for sec⁑x\sec x.
  5. The final result is:
ln⁑sec⁑(xβˆ’Ο€4)+tan⁑(xβˆ’Ο€4)+C \ln \sec \left(x - \frac{\pi}{4}\right) + \tan \left(x - \frac{\pi}{4}\right) + C