Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-4

Question Statement

Evaluate the following integral:

∫1xln⁑x,dx\int \frac{1}{x \ln x} , dx

Background and Explanation

This problem involves an integral that has a logarithmic expression both in the denominator and inside the logarithm. To solve it, we will use the substitution method. Specifically, we’ll let the inner logarithmic function be a new variable, which will simplify the integral.


Solution

  1. Substitute for simplification:
    We start by making the substitution:
u=ln⁑x u = \ln x

Differentiating both sides with respect to xx:

dudx=1xordx=x,du \frac{du}{dx} = \frac{1}{x} \quad \text{or} \quad dx = x , du
  1. Rewrite the integral:
    Substituting u=ln⁑xu = \ln x and dx=x,dudx = x , du into the original integral, we get:
∫1xln⁑x,dx=∫1xβ‹…1ln⁑x,dx=∫1u,du \int \frac{1}{x \ln x} , dx = \int \frac{1}{x} \cdot \frac{1}{\ln x} , dx = \int \frac{1}{u} , du
  1. Solve the simplified integral:
    The integral of 1u\frac{1}{u} is a standard form:
∫1u,du=ln⁑∣u∣+C \int \frac{1}{u} , du = \ln |u| + C

Substituting back u=ln⁑xu = \ln x:

ln⁑∣ln⁑x∣+C \ln |\ln x| + C

Key Formulas or Methods Used

  • Substitution:
    The substitution u=ln⁑xu = \ln x was used to simplify the integral.

  • Standard Integral:
    The integral of 1u\frac{1}{u} is:

∫1u,du=ln⁑∣u∣+C \int \frac{1}{u} , du = \ln |u| + C

Summary of Steps

  1. Make the substitution u=ln⁑xu = \ln x.
  2. Substitute into the integral, giving ∫1u,du\int \frac{1}{u} , du.
  3. Integrate 1u\frac{1}{u} to get ln⁑∣u∣+C\ln |u| + C.
  4. Substitute back u=ln⁑xu = \ln x to get the final answer:
    ln⁑∣ln⁑x∣+C\ln |\ln x| + C