Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-5

Question Statement

Evaluate the following integral:

∫exex+3,dx\int \frac{e^{x}}{e^{x}+3} , dx

Background and Explanation

This integral involves the exponential function in both the numerator and the denominator. We can simplify this expression using the substitution method. By substituting the denominator expression with a new variable, we can convert the integral into a simpler form.


Solution

  1. Substitute to simplify:
    Let the substitution be:
u=ex+3 u = e^x + 3

Then, differentiate both sides with respect to xx:

dudx=exordu=ex,dx \frac{du}{dx} = e^x \quad \text{or} \quad du = e^x , dx
  1. Rewrite the integral:
    Substituting u=ex+3u = e^x + 3 and du=ex,dxdu = e^x , dx into the original integral:
∫exex+3,dx=∫1u,du \int \frac{e^x}{e^x + 3} , dx = \int \frac{1}{u} , du
  1. Solve the integral:
    The integral of 1u\frac{1}{u} is a standard form:
∫1u,du=ln⁑∣u∣+C \int \frac{1}{u} , du = \ln |u| + C
  1. Substitute back the value of uu:
    Now, substitute back u=ex+3u = e^x + 3:
ln⁑∣ex+3∣+C \ln |e^x + 3| + C

Since ex+3>0e^x + 3 > 0 for all real xx, we can drop the absolute value:

ln⁑(ex+3)+C \ln (e^x + 3) + C

Key Formulas or Methods Used

  • Substitution:
    We used the substitution u=ex+3u = e^x + 3 to simplify the integral.

  • Standard Integral:
    The integral of 1u\frac{1}{u} is:

∫1u,du=ln⁑∣u∣+C \int \frac{1}{u} , du = \ln |u| + C

Summary of Steps

  1. Let u=ex+3u = e^x + 3 and differentiate to get du=ex,dxdu = e^x , dx.
  2. Rewrite the integral as ∫1u,du\int \frac{1}{u} , du.
  3. Integrate to get ln⁑∣u∣+C\ln |u| + C.
  4. Substitute back u=ex+3u = e^x + 3 to get the final answer:
    ln⁑(ex+3)+C\ln (e^x + 3) + C