Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-8

Question Statement

a. Show that:

dxx2a2=lnx+x2a2a+C\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right| + C

b. Show that:

a2x2,dx=a22sin1(xa)+x2a2x2+C\int \sqrt{a^2 - x^2} , dx = \frac{a^2}{2} \sin^{-1} \left( \frac{x}{a} \right) + \frac{x}{2} \sqrt{a^2 - x^2} + C

Background and Explanation

To solve these integrals, we apply standard substitution techniques and trigonometric identities. The first integral involves the inverse hyperbolic trigonometric function, while the second uses trigonometric substitution. Both methods simplify the integrals into forms that are easier to integrate.


Solution

Part a:

  1. Substitution:
    We begin by making the substitution x=asecθx = a \sec \theta. This leads to the following:

    • dx=asecθtanθ,dθdx = a \sec \theta \tan \theta , d\theta
    • The integral becomes:
dxx2a2=asecθtanθ,dθ(asecθ)2a2 \int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta , d\theta}{\sqrt{(a \sec \theta)^2 - a^2}}
  1. Simplification:
    Simplify the denominator:
(asecθ)2a2=a2(sec2θ1)=atan2θ=atanθ \sqrt{(a \sec \theta)^2 - a^2} = \sqrt{a^2(\sec^2 \theta - 1)} = a \sqrt{\tan^2 \theta} = a \tan \theta

Thus, the integral becomes:

asecθtanθ,dθatanθ=secθ,dθ \int \frac{a \sec \theta \tan \theta , d\theta}{a \tan \theta} = \int \sec \theta , d\theta
  1. Integrating:
    The integral of secθ\sec \theta is:
secθ,dθ=lnsecθ+tanθ+C \int \sec \theta , d\theta = \ln |\sec \theta + \tan \theta| + C
  1. Substitute back:
    Recall that x=asecθx = a \sec \theta, so secθ=xa\sec \theta = \frac{x}{a}. Also, tanθ=sec2θ1=x2a21=x2a2a\tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{\frac{x^2}{a^2} - 1} = \frac{\sqrt{x^2 - a^2}}{a}. Thus, the result is:
lnx+x2a2a+C \ln \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right| + C

Part b:

  1. Substitution:
    Use the substitution x=asinθx = a \sin \theta, so dx=acosθ,dθdx = a \cos \theta , d\theta. The integral becomes:
a2x2,dx=a2(asinθ)2acosθ,dθ \int \sqrt{a^2 - x^2} , dx = \int \sqrt{a^2 - (a \sin \theta)^2} \cdot a \cos \theta , d\theta
  1. Simplify:
    Simplifying the expression under the square root:
a2a2sin2θ=a2cos2θ=acosθ \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a \cos \theta

Thus, the integral becomes:

a2cos2θ,dθ a^2 \int \cos^2 \theta , d\theta
  1. Use of identity:
    Apply the double-angle identity for cosine:
cos2θ=1+cos2θ2 \cos^2 \theta = \frac{1 + \cos 2\theta}{2}

The integral becomes:

a21+cos2θ2,dθ a^2 \int \frac{1 + \cos 2\theta}{2} , d\theta
  1. Integrating:
    Integrate term by term:
1+cos2θ2,dθ=θ2+sin2θ4 \int \frac{1 + \cos 2\theta}{2} , d\theta = \frac{\theta}{2} + \frac{\sin 2\theta}{4}

Therefore, the integral is:

a22θ+a24sin2θ+C \frac{a^2}{2} \theta + \frac{a^2}{4} \sin 2\theta + C
  1. Substitute back:
    Now, use the inverse sine function for θ\theta, where sinθ=xa\sin \theta = \frac{x}{a}. Also, use the identity sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta. Finally, substitute back to express the result in terms of xx:
a22sin1(xa)+x2a2x2+C \frac{a^2}{2} \sin^{-1} \left( \frac{x}{a} \right) + \frac{x}{2} \sqrt{a^2 - x^2} + C

Key Formulas or Methods Used

  • Substitution:
    We used trigonometric substitutions to simplify the integrals.

  • Double-Angle Identity:
    The identity cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2} was applied to simplify the integral.

  • Integration of Trigonometric Functions:
    The standard integrals of secθ\sec \theta and cos2θ\cos^2 \theta were used.


Summary of Steps

Part a:

  1. Use the substitution x=asecθx = a \sec \theta.
  2. Simplify the integral using trigonometric identities.
  3. Integrate secθ\sec \theta.
  4. Substitute back in terms of xx to obtain the result.

Part b:

  1. Use the substitution x=asinθx = a \sin \theta.
  2. Simplify the integral using trigonometric identities.
  3. Integrate the expression.
  4. Substitute back in terms of xx to obtain the final result.