Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.3 Q-9

Question Statement

Evaluate the following integral:

dx(1+x2)32\int \frac{dx}{(1 + x^2)^{\frac{3}{2}}}

Background and Explanation

To solve this problem, we need to recognize a standard integral form that can be simplified using a trigonometric substitution. The key concepts involved include:

  • Trigonometric substitution: Using the identity 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta to simplify the integrand.
  • Basic trigonometric identities: Such as sec2θ=1+tan2θ\sec^2 \theta = 1 + \tan^2 \theta and cosθ=1secθ\cos \theta = \frac{1}{\sec \theta}.

Solution

Let’s solve this step by step:

  1. Substitute using trigonometric identities: We choose the substitution: x=tanθx = \tan \theta Then, we differentiate to get: dx=sec2θ,dθdx = \sec^2 \theta , d\theta

  2. Rewrite the integral: Substituting x=tanθx = \tan \theta into the original integral, we get:

dx(1+x2)32=sec2θ,dθ(1+tan2θ)32 \int \frac{dx}{(1 + x^2)^{\frac{3}{2}}} = \int \frac{\sec^2 \theta , d\theta}{(1 + \tan^2 \theta)^{\frac{3}{2}}}
  1. Simplify using a standard trigonometric identity: Recall that: 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta Thus, the integral becomes:
=sec2θ,dθ(sec2θ)32=sec2θ,dθsec3θ = \int \frac{\sec^2 \theta , d\theta}{(\sec^2 \theta)^{\frac{3}{2}}} = \int \frac{\sec^2 \theta , d\theta}{\sec^3 \theta}
  1. Simplify further: We can now cancel out one factor of secθ\sec \theta from the numerator and denominator:
=dθsecθ=cosθ,dθ = \int \frac{d\theta}{\sec \theta} = \int \cos \theta , d\theta
  1. Integrate: The integral of cosθ\cos \theta is straightforward:
cosθ,dθ=sinθ+C \int \cos \theta , d\theta = \sin \theta + C
  1. Substitute back in terms of x: Recall that x=tanθx = \tan \theta, so we can express sinθ\sin \theta in terms of xx:
sinθ=111+x2=x1+x2 \sin \theta = \sqrt{1 - \frac{1}{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}
  1. Final result: Therefore, the integral evaluates to:
dx(1+x2)32=x1+x2+C \int \frac{dx}{(1 + x^2)^{\frac{3}{2}}} = \frac{x}{\sqrt{1 + x^2}} + C

Key Formulas or Methods Used

  • Trigonometric substitution: x=tanθx = \tan \theta
  • Basic trigonometric identities:
    • 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta
    • secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

Summary of Steps

  1. Use the substitution x=tanθx = \tan \theta to simplify the integrand.
  2. Simplify the integral using the identity 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta.
  3. Express the integral in terms of secθ\sec \theta and simplify.
  4. Integrate cosθ\cos \theta to get sinθ+C\sin \theta + C.
  5. Substitute back to express the result in terms of xx.
  6. Final result: x1+x2+C\frac{x}{\sqrt{1 + x^2}} + C.