Question Statement
Evaluate the following integrals by parts:
Background and Explanation
In these problems, we will use the integration by parts formula, which is:
β«u,dv=uvββ«v,du
The goal is to break down complex integrals into simpler components by selecting appropriate functions for u and dv.
For these problems, functions like sinx, lnx, and powers of x will be paired with their derivatives to apply integration by parts efficiently.
Solution
i. β«xsinx,dx
We start by choosing u=x and dv=sinx,dx.
u=x,βdu=dx,dv=sinx,dx,βv=βcosx.β
Applying the formula:
β«xsinx,dx=x(βcosx)ββ«(βcosx),dx=βxcosx+β«cosx,dx=βxcosx+sinx+C.
Thus, the solution is:
sinxβxcosx+C.
ii. β«lnx,dx
We choose u=lnx and dv=1,dx.
u=lnx,βdu=x1β,dx,dv=1,dx,βv=x.β
Applying the formula:
β«lnx,dx=xlnxββ«xβ
x1β,dx=xlnxββ«1,dx=xlnxβx+C.
Thus, the solution is:
xlnxβx+C.
iii. β«xlnx,dx
We choose u=lnx and dv=x,dx.
u=lnx,βdu=x1β,dx,dv=x,dx,βv=2x2β.β
Applying the formula:
β«xlnx,dx=2x2βlnxββ«2x2ββ
x1β,dx=2x2βlnxβ21ββ«x,dx.
Now, integrating the remaining term:
2x2βlnxβ21ββ
2x2β+C=2x2βlnxβ4x2β+C.
Thus, the solution is:
2x2β(lnxβ21β)+C.
iv. β«x2lnx,dx
We choose u=lnx and dv=x2,dx.
u=lnx,βdu=x1β,dx,dv=x2,dx,βv=3x3β.β
Applying the formula:
β«x2lnx,dx=3x3βlnxββ«3x3ββ
x1β,dx=3x3βlnxβ31ββ«x2,dx.
Now, integrating the remaining term:
3x3βlnxβ31ββ
3x3β+C=3x3βlnxβ9x3β+C.
Thus, the solution is:
3x3β(lnxβ31β)+C.
v. β«x3lnx,dx
We choose u=lnx and dv=x3,dx.
u=lnx,βdu=x1β,dx,dv=x3,dx,βv=4x4β.β
Applying the formula:
β«x3lnx,dx=4x4βlnxββ«4x4ββ
x1β,dx=4x4βlnxβ41ββ«x3,dx.
Now, integrating the remaining term:
4x4βlnxβ41ββ
4x4β+C=4x4βlnxβ16x4β+C.
Thus, the solution is:
4x4β(lnxβ41β)+C.
vi. β«x4lnx,dx
We use integration by parts, selecting u=lnx and dv=x4dx. The derivatives and integrals are:
u=lnx,βdu=x1βdx,dv=x4dx,βv=5x5β.β
Applying the integration by parts formula:
β«x4lnx,dx=5x5βlnxββ«5x5ββ
x1β,dx
Simplifying the second term:
=5x5βlnxβ51ββ«x4,dx
Now, integrate x4:
51ββ«x4,dx=25x5β
Thus, the solution becomes:
5x5βlnxβ25x5β+C=5x5β(lnxβ51β)+C.
vii. β«tanβ1x,dx
We apply integration by parts, selecting u=tanβ1x and dv=dx. The derivatives and integrals are:
u=tanβ1x,βdu=x2+11β,dx,dv=dx,βv=x.β
Applying the formula:
β«tanβ1x,dx=xtanβ1xββ«x2+1xβ,dx
To solve the second integral, notice that:
β«x2+1xβ,dx=21βln(x2+1)
Thus, the solution is:
xtanβ1xβ21βln(x2+1)+C.
viii. β«x2sinx,dx
We use integration by parts twice. First, choose u=x2 and dv=sinx,dx. The derivatives and integrals are:
u=x2,βdu=2x,dx,dv=sinx,dx,βv=βcosx.β
Applying the formula:
β«x2sinx,dx=βx2cosx+β«2xcosx,dx.
Now, integrate 2xcosx by parts, choosing u=x and dv=cosx,dx. The derivatives and integrals are:
u=x,βdu=dx,dv=cosx,dx,βv=sinx.β
Applying the formula again:
β«2xcosx,dx=2(xsinxββ«sinx,dx)=2(xsinx+cosx).
Thus, the full solution is:
βx2cosx+2(xsinx+cosx)+C=βx2cosx+2xsinx+2cosx+C.
ix. β«x2tanβ1x,dx
We apply integration by parts, selecting u=tanβ1x and dv=x2,dx. The derivatives and integrals are:
u=tanβ1x,βdu=x2+11β,dx,dv=x2,dx,βv=3x3β.β
Applying the formula:
β«x2tanβ1x,dx=3x3βtanβ1xββ«3x3ββ
x2+11β,dx.
We divide x3 by x2+1:
x2+1x3β=xβx2+1xβ.
Thus, the integral becomes:
β«x2tanβ1x,dx=3x3βtanβ1xβ31ββ«x,dx+31ββ«x2+1xβ,dx.
We know the integral of x is 2x2β, and β«x2+1xβ,dx=21βln(x2+1), so we get:
β«x2tanβ1x,dx=3x3βtanβ1xβ6x2β+61βln(x2+1)+C.
x. β«xtanβ1x,dx
We apply integration by parts, selecting u=tanβ1x and dv=x,dx. The derivatives and integrals are:
u=tanβ1x,βdu=x2+11β,dx,dv=x,dx,βv=2x2β.β
Applying the formula:
β«xtanβ1x,dx=2x2βtanβ1xββ«2x2ββ
x2+11β,dx.
We simplify the second integral:
x2+1x2β=1βx2+11β.
Thus, the integral becomes:
β«xtanβ1x,dx=2x2βtanβ1xβ21ββ«dx+21ββ«x2+11β,dx.
We know the integrals:
β«dx=x,β«x2+11β,dx=tanβ1x.
Thus, the final solution is:
2x2βtanβ1xβ2xβ+21βtanβ1x+C=21βtanβ1x(x2+1)β2xβ+C.
xi. β«x3tanβ1x,dx
We use integration by parts, taking u=tanβ1x and dv=x3,dx. The derivatives and integrals are:
uβ=tanβ1x,βduβ=x2+11β,dx,dvβ=x3,dx,βvβ=4x4β.β
Applying the formula:
β«x3tanβ1x,dx=4x4βtanβ1xββ«4x4ββ
x2+11β,dx.
We split x2+1x4β into two parts:
x2+1x4β=x2βx2+11β.
Thus, the integral becomes:
β«x3tanβ1x,dx=4x4βtanβ1xβ41ββ«x2,dx+41ββ«x2+11β,dx.
Now we evaluate the remaining integrals:
β«x2,dx=3x3β,β«x2+11β,dx=tanβ1x.
Thus, the final result is:
β«x3tanβ1x,dx=4x4βtanβ1xβ12x3β+41βxβ41βtanβ1x+C.
xii. β«x3cosx,dx
We apply integration by parts, selecting u=x3 and dv=cosx,dx. The derivatives and integrals are:
uβ=x3,βduβ=3x2,dx,dvβ=cosx,dx,βvβ=sinx.β
Using the formula:
β«x3cosx,dx=x3sinxββ«3x2sinx,dx.
Now, we perform integration by parts again on β«x2sinx,dx, taking u=x2 and dv=sinx,dx. The derivatives and integrals are:
uβ=x2,βduβ=2x,dx,dvβ=sinx,dx,βvβ=βcosx.β
Thus, we have:
β«x2sinx,dx=βx2cosx+2β«xcosx,dx.
Now, we integrate β«xcosx,dx by parts, with u=x and dv=cosx,dx. The derivatives and integrals are:
uβ=x,βduβ=dx,dvβ=cosx,dx,βvβ=sinx.β
Thus:
β«xcosx,dx=xsinxββ«sinx,dx=xsinx+cosx.
Substituting back:
β«x3cosx,dx=x3sinxβ3(βx2cosx+2(xsinx+cosx)).
Simplifying:
β«x3cosx,dx=x3sinx+3x2cosxβ6xsinxβ6cosx+C.
xiii. β«sinβ1x,dx
We apply integration by parts, taking u=sinβ1x and dv=dx. The derivatives and integrals are:
uβ=sinβ1x,βduβ=1βx2β1β,dx,dvβ=dx,βvβ=x.β
Using the formula:
β«sinβ1x,dx=xsinβ1xββ«1βx2βxβ,dx.
The remaining integral is straightforward:
β«1βx2βxβ,dx=β1βx2β.
Thus, the final result is:
β«sinβ1x,dx=xsinβ1x+1βx2β+C.
xiv. β«xsinβ1x,dx
We use integration by parts, taking u=sinβ1x and dv=x,dx. The derivatives and integrals are:
uβ=sinβ1x,βduβ=1βx2β1β,dx,dvβ=x,dx,βvβ=2x2β.β
Using the formula:
β«xsinβ1x,dx=2x2βsinβ1xββ«2x2ββ
1βx2β1β,dx.
We split the remaining integral:
β«1βx2βx2β,dx=β«1βx2β1β(1βx2)β,dx=β«1βx2β1β,dxββ«1βx2β1β,dx.
Thus, the remaining part simplifies to:
2x2βsinβ1xβ(21ββ«1βx2β1βx2β,dx).
The resulting final answer is:
β«xsinβ1x,dx=2x2βsinβ1xβ41βsinβ1x+41β1βx2β+C.
xv. β«exsinxcosx,dx
We apply the product-to-sum formula: sinxcosx=21βsin(2x). Thus, we rewrite the integral as:
β«exsinxcosx,dx=21ββ«exsin(2x),dx.
We use integration by parts, taking u=ex and dv=sin(2x),dx. The derivatives and integrals are:
uβ=ex,βduβ=ex,dx,dvβ=sin(2x),dx,βvβ=β21βcos(2x).β
Using the formula:
β«exsin(2x),dx=β21βexcos(2x)+21ββ«excos(2x),dx.
Now, we integrate β«excos(2x),dx by parts, with u=ex and dv=cos(2x),dx:
uβ=ex,βduβ=ex,dx,dvβ=cos(2x),dx,βvβ=21βsin(2x).β
Thus:
β«excos(2x),dx=21βexsin(2x)β21ββ«exsin(2x),dx.
Substitute back:
β«exsin(2x),dx=β21βexcos(2x)+21β(21βexsin(2x)β21ββ«exsin(2x),dx).
Thus, the final result is:
β«exsinxcosx,dx=21βex(βcos2x+sin2x)+C.
xi. β«x3tanβ1x,dx
We use integration by parts, taking u=tanβ1x and dv=x3,dx. The derivatives and integrals are:
uβ=tanβ1x,βduβ=x2+11β,dx,dvβ=x3,dx,βvβ=4x4β.β
Applying the formula:
β«x3tanβ1x,dx=4x4βtanβ1xββ«4x4ββ
x2+11β,dx.
We split x2+1x4β into two parts:
x2+1x4β=x2βx2+11β.
Thus, the integral becomes:
β«x3tanβ1x,dx=4x4βtanβ1xβ41ββ«x2,dx+41ββ«x2+11β,dx.
Now we evaluate the remaining integrals:
β«x2,dx=3x3β,β«x2+11β,dx=tanβ1x.
Thus, the final result is:
β«x3tanβ1x,dx=4x4βtanβ1xβ12x3β+41βxβ41βtanβ1x+C.
xii. β«x3cosx,dx
We apply integration by parts, selecting u=x3 and dv=cosx,dx. The derivatives and integrals are:
uβ=x3,βduβ=3x2,dx,dvβ=cosx,dx,βvβ=sinx.β
Using the formula:
β«x3cosx,dx=x3sinxββ«3x2sinx,dx.
Now, we perform integration by parts again on β«x2sinx,dx, taking u=x2 and dv=sinx,dx. The derivatives and integrals are:
uβ=x2,βduβ=2x,dx,dvβ=sinx,dx,βvβ=βcosx.β
Thus, we have:
β«x2sinx,dx=βx2cosx+2β«xcosx,dx.
Now, we integrate β«xcosx,dx by parts, with u=x and dv=cosx,dx. The derivatives and integrals are:
uβ=x,βduβ=dx,dvβ=cosx,dx,βvβ=sinx.β
Thus:
β«xcosx,dx=xsinxββ«sinx,dx=xsinx+cosx.
Substituting back:
β«x3cosx,dx=x3sinxβ3(βx2cosx+2(xsinx+cosx)).
Simplifying:
β«x3cosx,dx=x3sinx+3x2cosxβ6xsinxβ6cosx+C.
xiii. β«sinβ1x,dx
We apply integration by parts, taking u=sinβ1x and dv=dx. The derivatives and integrals are:
uβ=sinβ1x,βduβ=1βx2β1β,dx,dvβ=dx,βvβ=x.β
Using the formula:
β«sinβ1x,dx=xsinβ1xββ«1βx2βxβ,dx.
The remaining integral is straightforward:
β«1βx2βxβ,dx=β1βx2β.
Thus, the final result is:
β«sinβ1x,dx=xsinβ1x+1βx2β+C.
xiv. β«xsinβ1x,dx
We use integration by parts, taking u=sinβ1x and dv=x,dx. The derivatives and integrals are:
uβ=sinβ1x,βduβ=1βx2β1β,dx,dvβ=x,dx,βvβ=2x2β.β
Using the formula:
β«xsinβ1x,dx=2x2βsinβ1xββ«2x2ββ
1βx2β1β,dx.
We split the remaining integral:
β«1βx2βx2β,dx=β«1βx2β1β(1βx2)β,dx=β«1βx2β1β,dxββ«1βx2β1β,dx.
Thus, the remaining part simplifies to:
2x2βsinβ1xβ(21ββ«1βx2β1βx2β,dx).
The resulting final answer is:
β«xsinβ1x,dx=2x2βsinβ1xβ41βsinβ1x+41β1βx2β+C.
xv. β«exsinxcosx,dx
We apply the product-to-sum formula: sinxcosx=21βsin(2x). Thus, we rewrite the integral as:
β«exsinxcosx,dx=21ββ«exsin(2x),dx.
We use integration by parts, taking u=ex and dv=sin(2x),dx. The derivatives and integrals are:
uβ=ex,βduβ=ex,dx,dvβ=sin(2x),dx,βvβ=β21βcos(2x).β
Using the formula:
β«exsin(2x),dx=β21βexcos(2x)+21ββ«excos(2x),dx.
Now, we integrate β«excos(2x),dx by parts, with u=ex and dv=cos(2x),dx:
uβ=ex,βduβ=ex,dx,dvβ=cos(2x),dx,βvβ=21βsin(2x).β
Thus:
β«excos(2x),dx=21βexsin(2x)β21ββ«exsin(2x),dx.
Substitute back:
β«exsin(2x),dx=β21βexcos(2x)+21β(21βexsin(2x)β21ββ«exsin(2x),dx).
Thus, the final result is:
β«exsinxcosx,dx=21βex(βcos2x+sin2x)+C.
xvi. β«xsinxcosx,dx
We start by using the double-angle identity for sine: sin2x=2sinxcosx. This simplifies the integral:
β«xsinxcosx,dx=21ββ«xsin2x,dx
Now, we apply integration by parts, selecting u=x and dv=sin2x,dx. The derivatives and integrals are:
u=x,βdu=dx,dv=sin2x,dx,βv=β21βcos2x.β
Using the integration by parts formula:
β«u,dv=uvββ«v,du,
we get:
21β[β2xcos2xβ+21ββ«cos2x,dx].
The integral of cos2x is 2sin2xβ, so we arrive at:
β«xsinxcosx,dx=41β[βxcos2x+sin2x]+C.
Thus, the final result is:
β«xsinxcosx,dx=41β(βxcos2x+sin2x)+C.β
xvii. β«xcos2x,dx
To solve this, we use the identity cos2x=21+cos2xβ, which simplifies the integral:
β«xcos2x,dx=21ββ«x(1+cos2x),dx=21β(β«x,dx+β«xcos2x,dx).
We now handle each part separately.
First part: β«x,dx
This is straightforward:
β«x,dx=2x2β.
Second part: β«xcos2x,dx
We apply integration by parts, selecting u=x and dv=cos2x,dx. The derivatives and integrals are:
u=x,βdu=dx,dv=cos2x,dx,βv=21βsin2x.β
Using the integration by parts formula:
β«xcos2x,dx=2xsin2xβββ«2sin2xβ,dx=2xsin2xβ+4cos2xβ.
Thus, the complete solution is:
β«xcos2x,dx=21β(2x2β+2xsin2xβ+4cos2xβ)+C.
The final result is:
β«xcos2x,dx=4x2β+4xsin2xβ+8cos2xβ+C.β
xviii. β«xsin2x,dx
We use the identity sin2x=21βcos2xβ, which simplifies the integral:
β«xsin2x,dx=21ββ«x(1βcos2x),dx=21β(β«x,dxββ«xcos2x,dx).
We now handle each part separately.
First part: β«x,dx
This is straightforward:
β«x,dx=2x2β.
Second part: β«xcos2x,dx
We already computed this in the previous part:
β«xcos2x,dx=2xsin2xβ+4cos2xβ.
Thus, the complete solution is:
β«xsin2x,dx=21β(2x2ββ2xsin2xββ4cos2xβ)+C.
The final result is:
β«xsin2x,dx=4x2ββ4xsin2xββ8cos2xβ+C.β
xix. β«(lnx)2,dx
We apply integration by parts, selecting u=(lnx)2 and dv=dx. The derivatives and integrals are:
u=(lnx)2,βdu=x2lnxβ,dx,dv=dx,βv=x.β
Using the integration by parts formula:
β«u,dv=uvββ«v,du,
we get:
x(lnx)2ββ«xβ
x2lnxβ,dx=x(lnx)2β2β«lnx,dx.
The integral of lnx is xlnxβx, so:
β«(lnx)2,dx=x(lnx)2β2(xlnxβx).
Thus, the final result is:
β«(lnx)2,dx=x(lnx)2β2xlnx+2x+C.β
xx. β«ln(tanx)sec2x,dx
We use integration by parts, selecting u=ln(tanx) and dv=sec2x,dx. The derivatives and integrals are:
u=ln(tanx),βdu=tanx1βsec2x,dx,dv=sec2x,dx,βv=tanx.β
Using the integration by parts formula:
β«u,dv=uvββ«v,du,
we get:
ln(tanx)β
tanxββ«tanxβ
tanx1βsec2x,dx=tanxln(tanx)ββ«sec2x,dx.
The integral of sec2x is tanx, so:
β«ln(tanx)sec2x,dx=tanxln(tanx)βtanx+C.
Thus, the final result is:
β«ln(tanx)sec2x,dx=tanxln(tanx)βtanx+C.β
xxi. β«1βx2βxsinxβ,dx
To solve this, we use the substitution u=sinβ1x, which simplifies the expression. The integral becomes:
β«1βx2βxsinxβ,dx=ββ«(1βx2βxβ)sinβ1x,dx.
Now, apply integration by parts, selecting u=sinβ1x and dv=1βx2βxβ,dx. The derivatives and integrals are:
u=sinβ1x,βdu=1βx2β1β,dx,dv=1βx2βxβ,dx,βv=1βx2β.β
Using the integration by parts formula:
β«u,dv=uvββ«v,du,
we get:
β(sinβ1xβ
1βx2βββ«1βx2β,dx)=βsinβ1xβ
1βx2β+β«dx.
Therefore:
β«1βx2βxsinxβ,dx=βsinβ1xβ
1βx2β+x+C.
-
Integration by Parts:
β«u,dv=uvββ«v,du
-
This formula is applied iteratively in these problems to handle integrals involving logarithms, trigonometric functions, and polynomials.
Summary of Steps
- Identify the parts of the integral to apply integration by parts.
- Choose u and dv based on their differentiability and simplicity upon differentiation/integration.
- Apply the integration by parts formula.
- Simplify and integrate any remaining terms.
- Combine the results and add the constant of integration.
Reference
By Great Science Academy: