Question Statement
Show that the following integral is equal to the given result:
β« e a x sin β‘ ( b x ) , d x = e a x a 2 + b 2 sin β‘ ( b x β tan β‘ β 1 b a ) + C \int \mathrm{e}^{\mathrm{ax}} \sin(bx) , dx = \frac{\mathrm{e}^{\mathrm{ax}}}{\sqrt{a^{2} + b^{2}}} \sin\left(bx - \tan^{-1}\frac{b}{a}\right) + C β« e ax sin ( b x ) , d x = a 2 + b 2 β e ax β sin ( b x β tan β 1 a b β ) + C
Background and Explanation
To solve this integral, we use integration by parts , a technique based on the formula:
β« u , d v = u v β β« v , d u \int u , dv = uv - \int v , du β« u , d v = uv β β« v , d u
We will need to apply integration by parts twice to handle the terms efficiently. The process involves breaking down the integral into simpler parts and using trigonometric identities along with exponential functions.
Solution
We begin with the integral:
I = β« e a x sin β‘ ( b x ) , d x I = \int e^{ax} \sin(bx) , dx I = β« e a x sin ( b x ) , d x
Step 1: Apply Integration by Parts
We choose the following parts for integration by parts:
Let u = sin β‘ ( b x ) u = \sin(bx) u = sin ( b x ) , and d v = e a x d x dv = e^{ax} dx d v = e a x d x .
Now, compute d u du d u and v v v :
d u = b cos β‘ ( b x ) , d x du = b \cos(bx) , dx d u = b cos ( b x ) , d x
v = e a x a v = \frac{e^{ax}}{a} v = a e a x β
Using the integration by parts formula:
I = β cos β‘ ( b x ) b e a x β β« β cos β‘ ( b x ) b e a x β
a , d x I = \frac{-\cos(bx)}{b} e^{ax} - \int \frac{-\cos(bx)}{b} e^{ax} \cdot a , dx I = b β cos ( b x ) β e a x β β« b β cos ( b x ) β e a x β
a , d x
This simplifies to:
I = β cos β‘ ( b x ) b e a x + a b β« e a x cos β‘ ( b x ) , d x I = \frac{-\cos(bx)}{b} e^{ax} + \frac{a}{b} \int e^{ax} \cos(bx) , dx I = b β cos ( b x ) β e a x + b a β β« e a x cos ( b x ) , d x
Step 2: Apply Integration by Parts Again
Next, we apply integration by parts to the remaining integral β« e a x cos β‘ ( b x ) , d x \int e^{ax} \cos(bx) , dx β« e a x cos ( b x ) , d x . Again, let:
u = cos β‘ ( b x ) u = \cos(bx) u = cos ( b x ) , and d v = e a x d x dv = e^{ax} dx d v = e a x d x .
Now, compute d u du d u and v v v :
d u = β b sin β‘ ( b x ) , d x du = -b \sin(bx) , dx d u = β b sin ( b x ) , d x
v = e a x a v = \frac{e^{ax}}{a} v = a e a x β
Substitute into the integration by parts formula:
β« e a x cos β‘ ( b x ) , d x = e a x a cos β‘ ( b x ) β β« e a x a ( β b sin β‘ ( b x ) ) , d x \int e^{ax} \cos(bx) , dx = \frac{e^{ax}}{a} \cos(bx) - \int \frac{e^{ax}}{a} (-b \sin(bx)) , dx β« e a x cos ( b x ) , d x = a e a x β cos ( b x ) β β« a e a x β ( β b sin ( b x )) , d x
Simplifying this:
β« e a x cos β‘ ( b x ) , d x = e a x a cos β‘ ( b x ) + b a β« e a x sin β‘ ( b x ) , d x \int e^{ax} \cos(bx) , dx = \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) , dx β« e a x cos ( b x ) , d x = a e a x β cos ( b x ) + a b β β« e a x sin ( b x ) , d x
Step 3: Substitute the New Integral Back
Now, substitute this result back into our original expression for I I I :
I = β cos β‘ ( b x ) b e a x + a b ( e a x a cos β‘ ( b x ) + b a β« e a x sin β‘ ( b x ) , d x ) I = \frac{-\cos(bx)}{b} e^{ax} + \frac{a}{b} \left( \frac{e^{ax}}{a} \cos(bx) + \frac{b}{a} \int e^{ax} \sin(bx) , dx \right) I = b β cos ( b x ) β e a x + b a β ( a e a x β cos ( b x ) + a b β β« e a x sin ( b x ) , d x )
Simplify:
I = β cos β‘ ( b x ) b e a x + e a x b cos β‘ ( b x ) + a b 2 β« e a x sin β‘ ( b x ) , d x I = \frac{-\cos(bx)}{b} e^{ax} + \frac{e^{ax}}{b} \cos(bx) + \frac{a}{b^2} \int e^{ax} \sin(bx) , dx I = b β cos ( b x ) β e a x + b e a x β cos ( b x ) + b 2 a β β« e a x sin ( b x ) , d x
Step 4: Solve for the Integral
Rearrange the equation to isolate the integral:
I β a b 2 I = e a x b ( a sin β‘ ( b x ) β b cos β‘ ( b x ) ) I - \frac{a}{b^2} I = \frac{e^{ax}}{b} \left( a \sin(bx) - b \cos(bx) \right) I β b 2 a β I = b e a x β ( a sin ( b x ) β b cos ( b x ) )
Factor out I I I :
( 1 + a 2 b 2 ) I = e a x b 2 ( a sin β‘ ( b x ) β b cos β‘ ( b x ) ) \left(1 + \frac{a^2}{b^2}\right) I = \frac{e^{ax}}{b^2} \left( a \sin(bx) - b \cos(bx) \right) ( 1 + b 2 a 2 β ) I = b 2 e a x β ( a sin ( b x ) β b cos ( b x ) )
Simplify the expression for I I I :
I = b 2 a 2 + b 2 β
1 b 2 ( a sin β‘ ( b x ) β b cos β‘ ( b x ) ) e a x + C I = \frac{b^2}{a^2 + b^2} \cdot \frac{1}{b^2} \left( a \sin(bx) - b \cos(bx) \right) e^{ax} + C I = a 2 + b 2 b 2 β β
b 2 1 β ( a sin ( b x ) β b cos ( b x ) ) e a x + C
Thus, we have:
I = 1 a 2 + b 2 [ a sin β‘ ( b x ) β b cos β‘ ( b x ) ] e a x + C I = \frac{1}{a^2 + b^2} \left[ a \sin(bx) - b \cos(bx) \right] e^{ax} + C I = a 2 + b 2 1 β [ a sin ( b x ) β b cos ( b x ) ] e a x + C
Finally, recognizing the trigonometric identity:
sin β‘ ( b x β tan β‘ β 1 b a ) = a sin β‘ ( b x ) β b cos β‘ ( b x ) a 2 + b 2 \sin \left( bx - \tan^{-1} \frac{b}{a} \right) = \frac{a \sin(bx) - b \cos(bx)}{\sqrt{a^2 + b^2}} sin ( b x β tan β 1 a b β ) = a 2 + b 2 β a sin ( b x ) β b cos ( b x ) β
We get the final result:
I = e a x a 2 + b 2 sin β‘ ( b x β tan β‘ β 1 b a ) + C I = \frac{e^{ax}}{\sqrt{a^2 + b^2}} \sin \left( bx - \tan^{-1} \frac{b}{a} \right) + C I = a 2 + b 2 β e a x β sin ( b x β tan β 1 a b β ) + C
Integration by Parts :
β« u , d v = u v β β« v , d u \int u , dv = uv - \int v , du β« u , d v = uv β β« v , d u
Trigonometric Identity :
sin β‘ ( b x β tan β‘ β 1 b a ) = a sin β‘ ( b x ) β b cos β‘ ( b x ) a 2 + b 2 \sin \left( bx - \tan^{-1} \frac{b}{a} \right) = \frac{a \sin(bx) - b \cos(bx)}{\sqrt{a^2 + b^2}} sin ( b x β tan β 1 a b β ) = a 2 + b 2 β a s i n ( b x ) β b c o s ( b x ) β
Summary of Steps
Apply Integration by Parts : Break the integral into two parts, one involving cos β‘ ( b x ) \cos(bx) cos ( b x ) .
Apply Integration by Parts Again : Solve the integral of e a x cos β‘ ( b x ) e^{ax} \cos(bx) e a x cos ( b x ) .
Combine the Results : Substitute the results back into the original equation.
Solve for I I I : Isolate the integral and simplify.
Final Simplification : Use the trigonometric identity to express the result in the desired form.
Reference
By Great Science Academy: