Question Statement
Evaluate the integral:
β«x(xβ1)(xβ3)2xβ1βdx
Background and Explanation
This problem requires knowledge of partial fraction decomposition. The fraction is broken into simpler terms that can be integrated individually. The concept of logarithmic integration is also used, as the resulting terms will involve ln functions.
Solution
To simplify the given integral, we express the fraction as a sum of partial fractions:
x(xβ1)(xβ3)2xβ1β=xAβ+xβ1Bβ+xβ3Cβ
Step 1: Multiply Through by the Denominator
Multiply both sides by x(xβ1)(xβ3) to eliminate the denominators:
2xβ1=A(xβ1)(xβ3)+Bx(xβ3)+Cx(xβ1)
Step 2: Solve for Coefficients (A, B, C)
Substitute convenient values for x to isolate and solve for each coefficient.
When x=0:
2(0)β1=A(0β1)(0β3)
β1=A(β1)(β3)βA=3β1β
When x=1:
2(1)β1=B(1)(1β3)
1=B(β2)βB=2β1β
When x=3:
2(3)β1=C(3)(3β1)
5=6CβC=65β
Step 3: Rewrite the Integral
Substitute the values of A, B, and C into the decomposition:
x(xβ1)(xβ3)2xβ1β=3xβ1ββ2(xβ1)1β+6(xβ3)5β
Thus, the integral becomes:
β«x(xβ1)(xβ3)2xβ1βdx=β«(3xβ1ββ2(xβ1)1β+6(xβ3)5β)dx
Step 4: Integrate Each Term
Using the formula β«u1βdu=lnβ£uβ£+C:
- For 3xβ1β:
β«3xβ1βdx=3β1βlnβ£xβ£
- For 2(xβ1)β1β:
β«2(xβ1)β1βdx=2β1βlnβ£xβ1β£
- For 6(xβ3)5β:
β«6(xβ3)5βdx=65βlnβ£xβ3β£
Combine the results:
β«x(xβ1)(xβ3)2xβ1βdx=3β1βlnβ£xβ£β21βlnβ£xβ1β£+65βlnβ£xβ3β£+C
- Partial Fraction Decomposition:
x(xβ1)(xβ3)2xβ1β=xAβ+xβ1Bβ+xβ3Cβ
- Logarithmic Integration:
β«u1βdu=lnβ£uβ£+C
Summary of Steps
- Decompose the fraction into partial fractions:
x(xβ1)(xβ3)2xβ1β=3xβ1ββ2(xβ1)1β+6(xβ3)5β
- Find coefficients A, B, and C by substituting values of x.
- A=3β1β, B=2β1β, C=65β
- Rewrite the integral and integrate each term individually.
- Combine the results to get the final solution:
β«x(xβ1)(xβ3)2xβ1βdx=3β1βlnβ£xβ£β21βlnβ£xβ1β£+65βlnβ£xβ3β£+C