Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-11

Question Statement

Evaluate the integral:

∫5x2+9x+6(x2βˆ’1)(2x+3),dx\int \frac{5 x^{2}+9 x+6}{\left(x^{2}-1\right)(2 x+3)} , dx

Background and Explanation

To solve this problem, we will use partial fraction decomposition. This technique allows us to break down a complex rational function into simpler fractions that are easier to integrate.

For the expression 5x2+9x+6(x2βˆ’1)(2x+3)\frac{5 x^{2}+9 x+6}{\left(x^{2}-1\right)(2 x+3)}, we will express it as a sum of simpler fractions. We need to recognize that x2βˆ’1x^2 - 1 factors as (xβˆ’1)(x+1)(x - 1)(x + 1).


Solution

We begin by setting up the partial fraction decomposition:

5x2+9x+6(x2βˆ’1)(2x+3)=Axβˆ’1+Bx+1+C2x+3(1)\frac{5 x^{2}+9 x+6}{\left(x^{2}-1\right)(2 x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{2x+3} \tag{1}

Next, multiply both sides of the equation by the denominator (xβˆ’1)(x+1)(2x+3)(x-1)(x+1)(2x+3):

5x2+9x+6=A(x+1)(2x+3)+B(xβˆ’1)(2x+3)+C(xβˆ’1)(x+1)(2)5 x^{2}+9 x+6 = A(x+1)(2x+3) + B(x-1)(2x+3) + C(x-1)(x+1) \tag{2}

Step 1: Find AA

Substitute x=1x = 1 into equation (2):

5(1)2+9(1)+6=A(1+1)(2(1)+3)5(1)^{2} + 9(1) + 6 = A(1+1)(2(1)+3)

Simplify:

20=A(2)(5)β‡’A=2010=220 = A(2)(5) \quad \Rightarrow \quad A = \frac{20}{10} = 2

Step 2: Find BB

Substitute x=βˆ’1x = -1 into equation (2):

5(βˆ’1)2+9(βˆ’1)+6=B(βˆ’1βˆ’1)(2(βˆ’1)+3)5(-1)^{2} + 9(-1) + 6 = B(-1-1)(2(-1)+3)

Simplify:

2=B(βˆ’2)(βˆ’1)β‡’B=22=βˆ’12 = B(-2)(-1) \quad \Rightarrow \quad B = \frac{2}{2} = -1

Step 3: Find CC

Substitute x=βˆ’32x = \frac{-3}{2} into equation (2):

5(βˆ’32)2+9(βˆ’32)+6=C(βˆ’52)(βˆ’12)5\left(\frac{-3}{2}\right)^{2} + 9\left(\frac{-3}{2}\right) + 6 = C\left(\frac{-5}{2}\right)\left(\frac{-1}{2}\right)

Simplify:

454βˆ’544+244=54C\frac{45}{4} - \frac{54}{4} + \frac{24}{4} = \frac{5}{4} C 154=54Cβ‡’C=3\frac{15}{4} = \frac{5}{4} C \quad \Rightarrow \quad C = 3

Thus, the partial fraction decomposition is:

5x2+9x+6(x2βˆ’1)(2x+3)=2xβˆ’1βˆ’1x+1+32x+3\frac{5 x^{2}+9 x+6}{\left(x^{2}-1\right)(2 x+3)} = \frac{2}{x-1} - \frac{1}{x+1} + \frac{3}{2x+3}

Step 4: Integration

Now, we integrate each term:

∫(2xβˆ’1βˆ’1x+1+32x+3)dx\int \left( \frac{2}{x-1} - \frac{1}{x+1} + \frac{3}{2x+3} \right) dx

Integrating each term:

=2ln⁑∣xβˆ’1βˆ£βˆ’ln⁑∣x+1∣+32ln⁑∣2x+3∣+C= 2 \ln |x-1| - \ln |x+1| + \frac{3}{2} \ln |2x+3| + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Decomposing a complex rational function into simpler fractions to facilitate integration.
  • Integration of Rational Functions: The integral of 1x\frac{1}{x} is ln⁑∣x∣\ln|x|, which we used for each term.

Summary of Steps

  1. Set up the partial fraction decomposition: 5x2+9x+6(x2βˆ’1)(2x+3)=Axβˆ’1+Bx+1+C2x+3\frac{5 x^{2}+9 x+6}{(x^2 - 1)(2x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{2x+3}

  2. Multiply both sides by the denominator to obtain an equation.

  3. Solve for AA, BB, and CC by substituting suitable values of xx.

  4. Perform the integration on each term separately.