Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-12

Question Statement

We are asked to solve the following integral:

∫4+7x(1+x)2(2+3x),dx\int \frac{4 + 7x}{(1 + x)^2(2 + 3x)} , dx

Background and Explanation

This problem requires us to solve a rational function using partial fraction decomposition. Partial fractions help break down a complex rational function into simpler fractions that can be integrated individually. To apply this technique, we will express the given rational function as a sum of simpler fractions, each corresponding to the factors in the denominator.


Solution

We begin by expressing the integrand as a sum of partial fractions:

4+7x(1+x)2(2+3x)=A1+x+B(1+x)2+C2+3x(i)\frac{4 + 7x}{(1 + x)^2(2 + 3x)} = \frac{A}{1 + x} + \frac{B}{(1 + x)^2} + \frac{C}{2 + 3x} \tag{i}

Now, multiply both sides of equation (i) by the denominator (1+x)2(2+3x)(1 + x)^2(2 + 3x) to eliminate the denominators:

4+7x=A(1+x)(2+3x)+B(2+3x)+C(1+x)2(ii)4 + 7x = A(1 + x)(2 + 3x) + B(2 + 3x) + C(1 + x)^2 \tag{ii}

Step 1: Solve for BB

Substitute x=βˆ’1x = -1 into equation (ii) to find BB:

4+7(βˆ’1)=B(2+3(βˆ’1))4βˆ’7=B(2βˆ’3)βˆ’3=βˆ’Bβ‡’B=34 + 7(-1) = B(2 + 3(-1)) 4 - 7 = B(2 - 3) -3 = -B \Rightarrow B = 3

Step 2: Solve for CC

Substitute x=βˆ’23x = \frac{-2}{3} into equation (ii) to find CC:

4+7(βˆ’23)=C(1βˆ’βˆ’23)212βˆ’143=C(3βˆ’23)2βˆ’23=C(19)C=βˆ’23Γ—91=βˆ’64 + 7\left(\frac{-2}{3}\right) = C\left(1 - \frac{-2}{3}\right)^2 \frac{12 - 14}{3} = C\left(\frac{3 - 2}{3}\right)^2 \frac{-2}{3} = C\left(\frac{1}{9}\right) C = \frac{-2}{3} \times \frac{9}{1} = -6

Step 3: Solve for AA

To find AA, we equate the coefficients of like terms from both sides of equation (ii):

4=2A+2B+C4=2A+2(3)βˆ’64=2A+6βˆ’6A=24 = 2A + 2B + C 4 = 2A + 2(3) - 6 4 = 2A + 6 - 6 A = 2

Thus, we can rewrite the original integral as:

∫4+7x(1+x)2(2+3x),dx=∫[21+x+3(1+x)2+βˆ’62+3x],dx\int \frac{4 + 7x}{(1 + x)^2(2 + 3x)} , dx = \int \left[ \frac{2}{1 + x} + \frac{3}{(1 + x)^2} + \frac{-6}{2 + 3x} \right] , dx

Step 4: Integrate the terms

Now we can integrate each term individually:

  1. The first term: ∫21+x,dx=2ln⁑∣1+x∣\int \frac{2}{1 + x} , dx = 2 \ln |1 + x|
  2. The second term: ∫3(1+x)2,dx=βˆ’31+x\int \frac{3}{(1 + x)^2} , dx = -\frac{3}{1 + x}
  3. The third term: βˆ«βˆ’62+3x,dx\int \frac{-6}{2 + 3x} , dx involves a substitution. Let u=2+3xu = 2 + 3x, so du=3dxdu = 3dx, and we get: βˆ«βˆ’62+3x,dx=βˆ’2ln⁑∣2+3x∣\int \frac{-6}{2 + 3x} , dx = -2 \ln |2 + 3x|

Therefore, the integral is:

2ln⁑∣1+xβˆ£βˆ’31+xβˆ’2ln⁑∣2+3x∣+C2 \ln |1 + x| - \frac{3}{1 + x} - 2 \ln |2 + 3x| + C

Final Answer:

Thus, the solution to the integral is:

ln⁑(1+x)2βˆ’ln⁑(2+3x)2βˆ’31+x+C\boxed{\ln(1 + x)^2 - \ln(2 + 3x)^2 - \frac{3}{1 + x} + C}

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Used to break the rational function into simpler fractions.
  • Integration of Common Rational Functions:
    • ∫1x,dx=ln⁑∣x∣\int \frac{1}{x} , dx = \ln |x|
    • ∫1x2,dx=βˆ’1x\int \frac{1}{x^2} , dx = -\frac{1}{x}
    • Substitution for linear functions in the denominator.

Summary of Steps

  1. Express the integrand as a sum of partial fractions.
  2. Solve for the unknown coefficients AA, BB, and CC by substituting values for xx.
  3. Rewrite the integral with the solved coefficients.
  4. Integrate each term using standard integration rules.
  5. Combine the results and simplify the expression.