Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-13

Question Statement

We are asked to solve the following integral:

∫2x2(xβˆ’1)2(x+1),dx\int \frac{2x^2}{(x - 1)^2(x + 1)} , dx

Background and Explanation

This problem involves partial fraction decomposition, a method used to simplify a rational function into a sum of simpler fractions. Each fraction is easier to integrate individually. In this case, the denominator has a repeated factor, (xβˆ’1)2(x - 1)^2, and a linear factor, (x+1)(x + 1), so we will decompose the expression into the form:

Ax+1+Bxβˆ’1+C(xβˆ’1)2\frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2}

We then solve for the constants AA, BB, and CC by equating terms.


Solution

We begin by expressing the integrand as a sum of partial fractions:

2x2(xβˆ’1)2(x+1)=Ax+1+Bxβˆ’1+C(xβˆ’1)2(i)\frac{2x^2}{(x - 1)^2(x + 1)} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2} \tag{i}

Now, multiply both sides of equation (i) by (xβˆ’1)2(x+1)(x - 1)^2(x + 1) to eliminate the denominators:

2x2=A(xβˆ’1)+B(x+1)+C(xβˆ’1)2(ii)2x^2 = A(x - 1) + B(x + 1) + C(x - 1)^2 \tag{ii}

Step 1: Solve for BB

Substitute x=1x = 1 into equation (ii) to solve for BB:

2(1)2=B(1+1)2=B(2)β‡’B=12(1)^2 = B(1 + 1) 2 = B(2) \quad \Rightarrow \quad B = 1

Step 2: Solve for CC

Substitute x=βˆ’1x = -1 into equation (ii) to solve for CC:

2(βˆ’1)2=C(βˆ’1βˆ’1)22=C(βˆ’2)2β‡’2=4CC=122(-1)^2 = C(-1 - 1)^2 2 = C(-2)^2 \quad \Rightarrow \quad 2 = 4C C = \frac{1}{2}

Step 3: Solve for AA

Now, equate the coefficients of x2x^2 terms from both sides of equation (ii) to solve for AA:

2=A+C2=A+12A=322 = A + C 2 = A + \frac{1}{2} A = \frac{3}{2}

Thus, we can rewrite the original integral as:

∫2x2(xβˆ’1)2(x+1),dx=∫[32xβˆ’1+1(xβˆ’1)2+12x+1],dx\int \frac{2x^2}{(x - 1)^2(x + 1)} , dx = \int \left[ \frac{\frac{3}{2}}{x - 1} + \frac{1}{(x - 1)^2} + \frac{\frac{1}{2}}{x + 1} \right] , dx

Step 4: Integrate the terms

Now we integrate each term:

  1. ∫32xβˆ’1,dx=32ln⁑∣xβˆ’1∣\int \frac{\frac{3}{2}}{x - 1} , dx = \frac{3}{2} \ln |x - 1|
  2. ∫1(xβˆ’1)2,dx=βˆ’1xβˆ’1\int \frac{1}{(x - 1)^2} , dx = -\frac{1}{x - 1}
  3. ∫12x+1,dx=12ln⁑∣x+1∣\int \frac{\frac{1}{2}}{x + 1} , dx = \frac{1}{2} \ln |x + 1|

Thus, the integral is:

32ln⁑∣xβˆ’1∣+12ln⁑∣x+1βˆ£βˆ’1xβˆ’1+C\frac{3}{2} \ln |x - 1| + \frac{1}{2} \ln |x + 1| - \frac{1}{x - 1} + C

Final Answer:

Therefore, the solution to the integral is:

32ln⁑∣xβˆ’1∣+12ln⁑∣x+1βˆ£βˆ’1xβˆ’1+C\boxed{\frac{3}{2} \ln |x - 1| + \frac{1}{2} \ln |x + 1| - \frac{1}{x - 1} + C}

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Used to break the rational function into simpler fractions.
  • Integration of Common Rational Functions:
    • ∫1x,dx=ln⁑∣x∣\int \frac{1}{x} , dx = \ln |x|
    • ∫1x2,dx=βˆ’1x\int \frac{1}{x^2} , dx = -\frac{1}{x}

Summary of Steps

  1. Express the integrand as a sum of partial fractions.
  2. Solve for the unknown coefficients AA, BB, and CC by substituting values for xx.
  3. Rewrite the integral with the solved coefficients.
  4. Integrate each term using standard integration rules.
  5. Combine the results and simplify the expression.