Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-16

Question Statement

Evaluate the integral:

∫x2βˆ’6x2+25(x+1)2(xβˆ’2)2,dx\int \frac{x^{2}-6x^{2}+25}{(x+1)^{2}(x-2)^{2}} , dx

Background and Explanation

This is an example of a rational function that can be solved using partial fraction decomposition. The integrand involves a fraction where the denominator is a product of squared binomials, which suggests that we can decompose it into simpler fractions for easier integration.

We need to express the given function as a sum of partial fractions, each of which will be easier to integrate individually.


Solution

Step 1: Set up the partial fraction decomposition

We aim to decompose the integrand into the form:

x2βˆ’6x2+25(x+1)2(xβˆ’2)2=Ax+1+B(x+1)2+Cxβˆ’2+D(xβˆ’2)2\frac{x^2 - 6x^2 + 25}{(x+1)^2(x-2)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2} + \frac{D}{(x-2)^2}

Here, A, B, C, and D are constants that we need to determine.


Step 2: Multiply both sides by the common denominator

Multiply both sides of the equation by (x+1)2(xβˆ’2)2(x+1)^2(x-2)^2 to eliminate the denominators:

x2βˆ’6x2+25=A(x+1)(xβˆ’2)2+B(xβˆ’2)2+C(xβˆ’2)(x+1)2+D(x+1)2x^2 - 6x^2 + 25 = A(x+1)(x-2)^2 + B(x-2)^2 + C(x-2)(x+1)^2 + D(x+1)^2

This results in the equation:

x2βˆ’6x2+25=A(x+1)(xβˆ’2)2+B(xβˆ’2)2+C(xβˆ’2)(x+1)2+D(x+1)2(ii)x^2 - 6x^2 + 25 = A(x+1)(x-2)^2 + B(x-2)^2 + C(x-2)(x+1)^2 + D(x+1)^2 \tag{ii}

Step 3: Substitute convenient values of xx to solve for constants

For x=βˆ’1x = -1:

Substituting x=βˆ’1x = -1 into equation (ii), we get:

(βˆ’1)2βˆ’6(βˆ’1)2+25=B(βˆ’1βˆ’2)2(-1)^2 - 6(-1)^2 + 25 = B(-1-2)^2

Simplifying:

1βˆ’6+25=B(3)2β‡’9B=18β‡’B=21 - 6 + 25 = B(3)^2 \Rightarrow 9B = 18 \Rightarrow B = 2

For x=2x = 2:

Substituting x=2x = 2 into equation (ii), we get:

(2)2βˆ’6(2)2+25=D(2+1)2(2)^2 - 6(2)^2 + 25 = D(2+1)^2

Simplifying:

4βˆ’24+25=D(3)2β‡’9D=9β‡’D=14 - 24 + 25 = D(3)^2 \Rightarrow 9D = 9 \Rightarrow D = 1

Step 4: Compare coefficients of powers of xx

We now compare the coefficients of x3x^3 and constant terms to solve for AA and CC.

From the comparison of x3x^3-terms:

1=A+Cβ‡’A=1βˆ’C1 = A + C \Rightarrow A = 1 - C

Next, comparing the constant term:

25=4A+4Bβˆ’2C+D25 = 4A + 4B - 2C + D

Substituting B=2B = 2 and D=1D = 1:

25=4A+8βˆ’2C+1β‡’25=4Aβˆ’2C+925 = 4A + 8 - 2C + 1 \Rightarrow 25 = 4A - 2C + 9

Simplifying:

25βˆ’9=4Aβˆ’2Cβ‡’16=4Aβˆ’2C25 - 9 = 4A - 2C \Rightarrow 16 = 4A - 2C

Now substitute A=1βˆ’CA = 1 - C:

16=4(1βˆ’C)βˆ’2Cβ‡’16=4βˆ’4Cβˆ’2Cβ‡’16=4βˆ’6C16 = 4(1 - C) - 2C \Rightarrow 16 = 4 - 4C - 2C \Rightarrow 16 = 4 - 6C

Solving for CC:

12=βˆ’6Cβ‡’C=βˆ’212 = -6C \Rightarrow C = -2

Now substitute C=βˆ’2C = -2 into A=1βˆ’CA = 1 - C:

A=1βˆ’(βˆ’2)=3A = 1 - (-2) = 3

Step 5: Write the partial fractions

Now we can write the integral as:

∫x2βˆ’6x2+25(x+1)2(xβˆ’2)2,dx=∫[3x+1+2(x+1)2βˆ’2xβˆ’2+1(xβˆ’2)2],dx\int \frac{x^2 - 6x^2 + 25}{(x+1)^2(x-2)^2} , dx = \int \left[ \frac{3}{x+1} + \frac{2}{(x+1)^2} - \frac{2}{x-2} + \frac{1}{(x-2)^2} \right] , dx

Step 6: Integrate each term

Now we can integrate each term individually:

∫3x+1,dx=3ln⁑∣x+1∣\int \frac{3}{x+1} , dx = 3 \ln |x+1| ∫2(x+1)2,dx=βˆ’2x+1\int \frac{2}{(x+1)^2} , dx = -\frac{2}{x+1} βˆ«βˆ’2xβˆ’2,dx=βˆ’2ln⁑∣xβˆ’2∣\int \frac{-2}{x-2} , dx = -2 \ln |x-2| ∫1(xβˆ’2)2,dx=1xβˆ’2\int \frac{1}{(x-2)^2} , dx = \frac{1}{x-2}

Step 7: Combine the results

Combining the results of the individual integrals, we get:

3ln⁑∣x+1βˆ£βˆ’2x+1βˆ’2ln⁑∣xβˆ’2∣+1xβˆ’2+C3 \ln |x+1| - \frac{2}{x+1} - 2 \ln |x-2| + \frac{1}{x-2} + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: This method allows us to decompose complex rational expressions into simpler fractions that are easier to integrate.
  • Basic Integration: The integral of 1x\frac{1}{x} is ln⁑∣x∣\ln|x|, and the integral of 1(xβˆ’a)2\frac{1}{(x-a)^2} is βˆ’1xβˆ’a-\frac{1}{x-a}.

Summary of Steps

  1. Set up the partial fraction decomposition.
  2. Multiply both sides by (x+1)2(xβˆ’2)2(x+1)^2(x-2)^2 to eliminate denominators.
  3. Substitute values of xx (like x=βˆ’1x = -1 and x=2x = 2) to solve for constants AA, BB, CC, and DD.
  4. Compare coefficients of powers of xx to find any remaining constants.
  5. Substitute the constants back into the partial fractions.
  6. Integrate each term.
  7. Combine the results and include the constant of integration.