Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-17

Question Statement

Evaluate the integral:

∫x3+22x2+14xβˆ’17(xβˆ’3)(x+2)3,dx\int \frac{x^{3}+22x^{2}+14x-17}{(x-3)(x+2)^{3}} , dx

Background and Explanation

To solve this integral, we will use partial fraction decomposition. The integrand is a rational function, and the denominator is factored into linear and quadratic terms. The general approach is to express the rational function as a sum of simpler fractions, which can then be integrated individually. The terms we will use are based on the factors in the denominator: (xβˆ’3)(x-3) and (x+2)3(x+2)^3.


Solution

Step 1: Set up the Partial Fraction Decomposition

We assume that the integrand can be written as:

x3+22x2+14xβˆ’17(xβˆ’3)(x+2)3=Axβˆ’3+Bx+2+C(x+2)2+D(x+2)3\frac{x^{3}+22x^{2}+14x-17}{(x-3)(x+2)^{3}} = \frac{A}{x-3} + \frac{B}{x+2} + \frac{C}{(x+2)^2} + \frac{D}{(x+2)^3}

Multiply both sides by (xβˆ’3)(x+2)3(x-3)(x+2)^3 to clear the denominators:

x3+22x2+14xβˆ’17=A(x+2)3+B(xβˆ’3)(x+2)2+C(xβˆ’3)(x+2)+D(xβˆ’3)x^{3} + 22x^{2} + 14x - 17 = A(x+2)^3 + B(x-3)(x+2)^2 + C(x-3)(x+2) + D(x-3)

Step 2: Solve for Constants AA, BB, CC, and DD

Finding AA:

Substitute x=3x = 3 into the equation to eliminate the terms involving BB, CC, and DD:

(3)3+22(3)2+14(3)βˆ’17=A(3+2)3(3)^3 + 22(3)^2 + 14(3) - 17 = A(3+2)^3

This simplifies to:

27+198+42βˆ’17=A(5)327 + 198 + 42 - 17 = A(5)^3 250.4=125Aβ‡’A=2250.4 = 125A \quad \Rightarrow \quad A = 2

Finding DD:

Substitute x=βˆ’2x = -2 into the equation to eliminate the terms involving AA, BB, and CC:

(βˆ’2)3+22(βˆ’2)2+14(βˆ’2)βˆ’17=D(βˆ’2βˆ’3)(-2)^3 + 22(-2)^2 + 14(-2) - 17 = D(-2-3)

This simplifies to:

βˆ’8+88βˆ’28βˆ’17=βˆ’5D-8 + 88 - 28 - 17 = -5D 35=βˆ’5Dβ‡’D=βˆ’735 = -5D \quad \Rightarrow \quad D = -7

Finding BB and CC:

Now, we compare the coefficients of like powers of xx. From the x3x^3 term:

1=A+Bβ‡’B=1βˆ’A=1βˆ’2=βˆ’11 = A + B \quad \Rightarrow \quad B = 1 - A = 1 - 2 = -1

Next, use the constant term to find CC:

17=8Aβˆ’1Bβˆ’6Cβˆ’3D17 = 8A - 1B - 6C - 3D

Substitute the known values for AA, BB, and DD:

17=8(2)βˆ’1(βˆ’1)βˆ’6Cβˆ’3(βˆ’7)17 = 8(2) - 1(-1) - 6C - 3(-7)

This simplifies to:

17=16+1βˆ’6C+21β‡’17=38βˆ’6C17 = 16 + 1 - 6C + 21 \quad \Rightarrow \quad 17 = 38 - 6C

Solve for CC:

βˆ’6C=17βˆ’38β‡’βˆ’6C=βˆ’21β‡’C=11-6C = 17 - 38 \quad \Rightarrow \quad -6C = -21 \quad \Rightarrow \quad C = 11

Step 3: Substitute Back into the Decomposition

Now that we have the values for AA, BB, CC, and DD, we can rewrite the integrand as:

x3+22x2+14xβˆ’17(xβˆ’3)(x+2)3=2xβˆ’3βˆ’1x+2+11(x+2)2βˆ’7(x+2)3\frac{x^{3}+22x^{2}+14x-17}{(x-3)(x+2)^3} = \frac{2}{x-3} - \frac{1}{x+2} + \frac{11}{(x+2)^2} - \frac{7}{(x+2)^3}

Step 4: Integrate Each Term

Now, integrate each term separately:

∫2xβˆ’3,dx=2ln⁑∣xβˆ’3∣\int \frac{2}{x-3} , dx = 2 \ln |x-3| βˆ«βˆ’1x+2,dx=βˆ’ln⁑∣x+2∣\int \frac{-1}{x+2} , dx = -\ln |x+2| ∫11(x+2)2,dx=βˆ’11x+2\int \frac{11}{(x+2)^2} , dx = \frac{-11}{x+2} βˆ«βˆ’7(x+2)3,dx=72(x+2)2\int \frac{-7}{(x+2)^3} , dx = \frac{7}{2(x+2)^2}

Key Formulas or Methods Used

  • Partial Fraction Decomposition: We split the rational function into simpler fractions that are easier to integrate.
  • Integration of Rational Functions: The standard formulas for the integrals of terms like 1xβˆ’a\frac{1}{x-a} and 1(xβˆ’a)n\frac{1}{(x-a)^n}.

Summary of Steps

  1. Set up the partial fraction decomposition based on the factors of the denominator.
  2. Multiply through by the denominator to eliminate fractions.
  3. Substitute values of xx to solve for the constants AA, BB, CC, and DD.
  4. Rewrite the rational function using the constants found.
  5. Integrate each term separately and combine the results.

The final answer is:

2ln⁑∣xβˆ’3βˆ£βˆ’ln⁑∣x+2βˆ£βˆ’11x+2+72(x+2)2+C2 \ln |x-3| - \ln |x+2| - \frac{11}{x+2} + \frac{7}{2(x+2)^2} + C