Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-19

Question Statement

Evaluate the following integral:

∫x(xβˆ’1)(x2+1),dx\int \frac{x}{(x-1)(x^{2}+1)} , dx

Background and Explanation

To solve this problem, we’ll use the method of partial fraction decomposition. This involves breaking the given rational function into simpler fractions that can be integrated more easily.

We express the integrand as a sum of fractions:

x(xβˆ’1)(x2+1)=Axβˆ’1+Bx+Cx2+1\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}

where AA, BB, and CC are constants we need to determine.


Solution

We begin by multiplying both sides of the equation by the denominator (xβˆ’1)(x2+1)(x-1)(x^2+1) to eliminate the denominators:

x=A(x2+1)+(Bx+C)(xβˆ’1)x = A(x^2 + 1) + (Bx + C)(x - 1)

Next, expand both sides:

x=A(x2+1)+(Bx+C)(xβˆ’1)x = A(x^2 + 1) + (Bx + C)(x - 1) x=A(x2+1)+Bx(xβˆ’1)+C(xβˆ’1)x = A(x^2 + 1) + Bx(x - 1) + C(x - 1)

Now, let’s expand further:

x=A(x2+1)+Bx2βˆ’Bx+Cxβˆ’Cx = A(x^2 + 1) + Bx^2 - Bx + Cx - C x=Ax2+A+Bx2βˆ’Bx+Cxβˆ’Cx = A x^2 + A + Bx^2 - Bx + Cx - C

Now, compare the coefficients of like terms on both sides. On the left-hand side, we have just xx, which means the coefficient of x2x^2 is 0, and the coefficient of xx is 1.

Step 1: Coefficients of x2x^2

On the right-hand side, the coefficient of x2x^2 is A+BA + B. So, we have:

A+B=0A + B = 0

This gives us:

B=βˆ’AB = -A

Step 2: Coefficients of xx

The coefficient of xx on the right-hand side is βˆ’B+C-B + C. From the left-hand side, the coefficient of xx is 1, so:

βˆ’B+C=1-B + C = 1

Substitute B=βˆ’AB = -A into this equation:

A+C=1A + C = 1

Thus, we get:

C=1βˆ’AC = 1 - A

Step 3: Constant terms

The constant term on the right-hand side is Aβˆ’CA - C. On the left-hand side, the constant term is 0. Therefore:

Aβˆ’C=0A - C = 0

Substitute C=1βˆ’AC = 1 - A into this:

Aβˆ’(1βˆ’A)=0A - (1 - A) = 0

Simplifying:

Aβˆ’1+A=0β‡’2A=1β‡’A=12A - 1 + A = 0 \quad \Rightarrow \quad 2A = 1 \quad \Rightarrow \quad A = \frac{1}{2}

Now that we have A=12A = \frac{1}{2}, substitute this back into the equations for BB and CC:

B=βˆ’A=βˆ’12,C=1βˆ’A=1βˆ’12=12B = -A = -\frac{1}{2}, \quad C = 1 - A = 1 - \frac{1}{2} = \frac{1}{2}

Thus, the partial fraction decomposition is:

x(xβˆ’1)(x2+1)=1/2xβˆ’1+βˆ’1/2x+1/2x2+1\frac{x}{(x-1)(x^2+1)} = \frac{1/2}{x-1} + \frac{-1/2 x + 1/2}{x^2+1}

Now, we can integrate each term separately:

∫x(xβˆ’1)(x2+1),dx=12∫1xβˆ’1,dx+12βˆ«βˆ’x+1x2+1,dx\int \frac{x}{(x-1)(x^2+1)} , dx = \frac{1}{2} \int \frac{1}{x-1} , dx + \frac{1}{2} \int \frac{-x + 1}{x^2+1} , dx

We integrate each term:

  1. The first term:
12∫1xβˆ’1,dx=12ln⁑∣xβˆ’1∣\frac{1}{2} \int \frac{1}{x-1} , dx = \frac{1}{2} \ln |x-1|
  1. The second term can be split:
12(βˆ«βˆ’xx2+1,dx+∫1x2+1,dx)\frac{1}{2} \left( \int \frac{-x}{x^2+1} , dx + \int \frac{1}{x^2+1} , dx \right)
  • The first part, βˆ«βˆ’xx2+1,dx\int \frac{-x}{x^2+1} , dx, is a standard integral whose solution is:
βˆ’14ln⁑(x2+1)-\frac{1}{4} \ln(x^2+1)
  • The second part, ∫1x2+1,dx\int \frac{1}{x^2+1} , dx, is the arctangent function:
12tanβ‘βˆ’1(x)\frac{1}{2} \tan^{-1}(x)

So the integral becomes:

∫x(xβˆ’1)(x2+1),dx=12ln⁑∣xβˆ’1βˆ£βˆ’14ln⁑(x2+1)+12tanβ‘βˆ’1(x)+C\int \frac{x}{(x-1)(x^2+1)} , dx = \frac{1}{2} \ln |x-1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \tan^{-1}(x) + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition:
x(xβˆ’1)(x2+1)=Axβˆ’1+Bx+Cx2+1\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}
  • Basic Integrals:
    • ∫1xβˆ’1,dx=ln⁑∣xβˆ’1∣\int \frac{1}{x-1} , dx = \ln |x-1|
    • ∫1x2+1,dx=tanβ‘βˆ’1(x)\int \frac{1}{x^2+1} , dx = \tan^{-1}(x)
    • βˆ«βˆ’xx2+1,dx=βˆ’12ln⁑(x2+1)\int \frac{-x}{x^2+1} , dx = -\frac{1}{2} \ln(x^2+1)

Summary of Steps

  1. Set up Partial Fraction Decomposition: x(xβˆ’1)(x2+1)=Axβˆ’1+Bx+Cx2+1\frac{x}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}

  2. Multiply through by the denominator: Eliminate denominators by multiplying by (xβˆ’1)(x2+1)(x-1)(x^2+1).

  3. Expand and compare coefficients: Solve for AA, BB, and CC by comparing terms for x2x^2, xx, and constants.

  4. Integrate each term:

    • 12∫1xβˆ’1,dx\frac{1}{2} \int \frac{1}{x-1} , dx
    • 12βˆ«βˆ’xx2+1,dx\frac{1}{2} \int \frac{-x}{x^2+1} , dx and 12∫1x2+1,dx\frac{1}{2} \int \frac{1}{x^2+1} , dx
  5. Combine the results to get the final solution:

12ln⁑∣xβˆ’1βˆ£βˆ’14ln⁑(x2+1)+12tanβ‘βˆ’1(x)+C\frac{1}{2} \ln |x-1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \tan^{-1}(x) + C