Question Statement
Evaluate the integral:
β«(x+3)(2xβ1)5x+8β,dx
Background and Explanation
This problem requires using partial fraction decomposition to simplify the integrand into a sum of simpler fractions. The denominator has two linear factors, (x+3) and (2xβ1), making it suitable for partial fraction methods. Each term can then be integrated using the basic rule for logarithmic integrals.
Prerequisite knowledge:
- Factoring polynomials and setting up partial fractions.
- Basic integration of the form β«x+c1β,dx=lnβ£x+cβ£+C.
Solution
Step 1: Express the fraction as partial fractions
Write the given fraction as:
(x+3)(2xβ1)5x+8β=x+3Aβ+2xβ1Bβ.
Multiply through by the denominator (x+3)(2xβ1) to eliminate fractions:
5x+8=A(2xβ1)+B(x+3).(1)
Step 2: Solve for A and B
Case 1: Substitute x=β3
Substituting x=β3 into equation (1):
5(β3)+8=A(2(β3)β1)+B(β3+3).
Simplify:
β15+8=A(β6β1)+0βΉβ7=β7AβΉA=1.
Case 2: Substitute x=21β
Substituting x=21β into equation (1):
5(21β)+8=A(2(21β)β1)+B(21β+3).
Simplify:
25β+8=0+B(27β)βΉ221β=27βBβΉB=3.
Thus, A=1 and B=3.
Step 3: Rewrite the integral
Substitute the partial fraction decomposition:
(x+3)(2xβ1)5x+8β=x+31β+2xβ13β.
The integral becomes:
β«(x+3)(2xβ1)5x+8β,dx=β«x+31β,dx+β«2xβ13β,dx.
Step 4: Integrate each term
First term:
β«x+31β,dx=lnβ£x+3β£+C1β.
Second term:
Factor out constants where needed:
β«2xβ13β,dx=3β«2xβ11β,dx.
Let u=2xβ1, so du=2,dx or dx=21β,du. Substitute:
3β«2xβ11β,dx=3β
21ββ«u1β,du=23βlnβ£uβ£+C2β.
Replace u=2xβ1:
23βlnβ£2xβ1β£+C2β.
Step 5: Combine the results
Add the results from both terms:
β«(x+3)(2xβ1)5x+8β,dx=lnβ£x+3β£+23βlnβ£2xβ1β£+C,
where C=C1β+C2β is the constant of integration.
- Partial Fraction Decomposition:
(x+3)(2xβ1)5x+8β=x+3Aβ+2xβ1Bβ.
- Integration of Rational Functions:
β«x+c1β,dx=lnβ£x+cβ£+C.
- Substitution Method:
For β«2xβ11β,dx, let u=2xβ1, then dx=21β,du.
Summary of Steps
- Write the integrand using partial fractions: (x+3)(2xβ1)5x+8β=x+31β+2xβ13β.
- Solve for A and B using substitution in 5x+8=A(2xβ1)+B(x+3).
- Rewrite the integral as two separate terms:
β«x+31β,dx+β«2xβ13β,dx.
- Integrate each term:
- β«x+31β,dx=lnβ£x+3β£
- β«2xβ13β,dx=23βlnβ£2xβ1β£.
- Combine results into the final answer:
lnβ£x+3β£+23βlnβ£2xβ1β£+C.