Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-2

Question Statement

Evaluate the integral:

∫5x+8(x+3)(2xβˆ’1),dx\int \frac{5x+8}{(x+3)(2x-1)} , dx

Background and Explanation

This problem requires using partial fraction decomposition to simplify the integrand into a sum of simpler fractions. The denominator has two linear factors, (x+3)(x+3) and (2xβˆ’1)(2x-1), making it suitable for partial fraction methods. Each term can then be integrated using the basic rule for logarithmic integrals.

Prerequisite knowledge:

  • Factoring polynomials and setting up partial fractions.
  • Basic integration of the form ∫1x+c,dx=ln⁑∣x+c∣+C\int \frac{1}{x+c} , dx = \ln|x+c| + C.

Solution

Step 1: Express the fraction as partial fractions

Write the given fraction as:

5x+8(x+3)(2xβˆ’1)=Ax+3+B2xβˆ’1.\frac{5x+8}{(x+3)(2x-1)} = \frac{A}{x+3} + \frac{B}{2x-1}.

Multiply through by the denominator (x+3)(2xβˆ’1)(x+3)(2x-1) to eliminate fractions:

5x+8=A(2xβˆ’1)+B(x+3).(1)5x + 8 = A(2x - 1) + B(x + 3). \tag{1}

Step 2: Solve for AA and BB

Case 1: Substitute x=βˆ’3x = -3

Substituting x=βˆ’3x = -3 into equation (1):

5(βˆ’3)+8=A(2(βˆ’3)βˆ’1)+B(βˆ’3+3).5(-3) + 8 = A(2(-3) - 1) + B(-3 + 3).

Simplify:

βˆ’15+8=A(βˆ’6βˆ’1)+0β€…β€ŠβŸΉβ€…β€Šβˆ’7=βˆ’7Aβ€…β€ŠβŸΉβ€…β€ŠA=1.-15 + 8 = A(-6 - 1) + 0 \implies -7 = -7A \implies A = 1.

Case 2: Substitute x=12x = \frac{1}{2}

Substituting x=12x = \frac{1}{2} into equation (1):

5(12)+8=A(2(12)βˆ’1)+B(12+3).5\left(\frac{1}{2}\right) + 8 = A\left(2\left(\frac{1}{2}\right) - 1\right) + B\left(\frac{1}{2} + 3\right).

Simplify:

52+8=0+B(72)β€…β€ŠβŸΉβ€…β€Š212=72Bβ€…β€ŠβŸΉβ€…β€ŠB=3.\frac{5}{2} + 8 = 0 + B\left(\frac{7}{2}\right) \implies \frac{21}{2} = \frac{7}{2}B \implies B = 3.

Thus, A=1A = 1 and B=3B = 3.

Step 3: Rewrite the integral

Substitute the partial fraction decomposition:

5x+8(x+3)(2xβˆ’1)=1x+3+32xβˆ’1.\frac{5x+8}{(x+3)(2x-1)} = \frac{1}{x+3} + \frac{3}{2x-1}.

The integral becomes:

∫5x+8(x+3)(2xβˆ’1),dx=∫1x+3,dx+∫32xβˆ’1,dx.\int \frac{5x+8}{(x+3)(2x-1)} , dx = \int \frac{1}{x+3} , dx + \int \frac{3}{2x-1} , dx.

Step 4: Integrate each term

First term:

∫1x+3,dx=ln⁑∣x+3∣+C1.\int \frac{1}{x+3} , dx = \ln|x+3| + C_1.

Second term:

Factor out constants where needed:

∫32xβˆ’1,dx=3∫12xβˆ’1,dx.\int \frac{3}{2x-1} , dx = 3 \int \frac{1}{2x-1} , dx.

Let u=2xβˆ’1u = 2x - 1, so du=2,dxdu = 2 , dx or dx=12,dudx = \frac{1}{2} , du. Substitute:

3∫12xβˆ’1,dx=3β‹…12∫1u,du=32ln⁑∣u∣+C2.3 \int \frac{1}{2x-1} , dx = 3 \cdot \frac{1}{2} \int \frac{1}{u} , du = \frac{3}{2} \ln|u| + C_2.

Replace u=2xβˆ’1u = 2x - 1:

32ln⁑∣2xβˆ’1∣+C2.\frac{3}{2} \ln|2x-1| + C_2.

Step 5: Combine the results

Add the results from both terms:

∫5x+8(x+3)(2xβˆ’1),dx=ln⁑∣x+3∣+32ln⁑∣2xβˆ’1∣+C,\int \frac{5x+8}{(x+3)(2x-1)} , dx = \ln|x+3| + \frac{3}{2} \ln|2x-1| + C,

where C=C1+C2C = C_1 + C_2 is the constant of integration.


Key Formulas or Methods Used

  1. Partial Fraction Decomposition:
5x+8(x+3)(2xβˆ’1)=Ax+3+B2xβˆ’1. \frac{5x+8}{(x+3)(2x-1)} = \frac{A}{x+3} + \frac{B}{2x-1}.
  1. Integration of Rational Functions:
∫1x+c,dx=ln⁑∣x+c∣+C. \int \frac{1}{x+c} , dx = \ln|x+c| + C.
  1. Substitution Method: For ∫12xβˆ’1,dx\int \frac{1}{2x-1} , dx, let u=2xβˆ’1u = 2x-1, then dx=12,dudx = \frac{1}{2} , du.

Summary of Steps

  1. Write the integrand using partial fractions: 5x+8(x+3)(2xβˆ’1)=1x+3+32xβˆ’1\frac{5x+8}{(x+3)(2x-1)} = \frac{1}{x+3} + \frac{3}{2x-1}.
  2. Solve for AA and BB using substitution in 5x+8=A(2xβˆ’1)+B(x+3)5x + 8 = A(2x - 1) + B(x + 3).
  3. Rewrite the integral as two separate terms:
∫1x+3,dx+∫32xβˆ’1,dx. \int \frac{1}{x+3} , dx + \int \frac{3}{2x-1} , dx.
  1. Integrate each term:
    • ∫1x+3,dx=ln⁑∣x+3∣\int \frac{1}{x+3} , dx = \ln|x+3|
    • ∫32xβˆ’1,dx=32ln⁑∣2xβˆ’1∣\int \frac{3}{2x-1} , dx = \frac{3}{2} \ln|2x-1|.
  2. Combine results into the final answer:
ln⁑∣x+3∣+32ln⁑∣2xβˆ’1∣+C. \ln|x+3| + \frac{3}{2} \ln|2x-1| + C.