Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-21

Question Statement

Evaluate the integral:

∫1+4x(xβˆ’3)(x2+4),dx\int \frac{1+4 x}{(x-3)\left(x^{2}+4\right)} , dx

Background and Explanation

To solve this problem, we use partial fraction decomposition, which involves expressing the rational function as a sum of simpler fractions. The method allows us to break down the integrand into terms that are easier to integrate. Specifically, we split the rational function into two fractions:

  1. One fraction with the denominator (xβˆ’3)(x-3).
  2. Another fraction with the denominator (x2+4)(x^2 + 4).

This approach requires determining appropriate constants (A, B, C) to fit the given function.


Solution

We begin by setting up the partial fraction decomposition. The given rational function is:

1+4x(xβˆ’3)(x2+4)=Axβˆ’3+Bx+Cx2+4(i)\frac{1+4x}{(x-3)(x^2+4)} = \frac{A}{x-3} + \frac{B x + C}{x^2 + 4} \tag{i}

Step 1: Multiply through by the common denominator

Multiply both sides by (xβˆ’3)(x2+4)(x-3)(x^2+4) to eliminate the denominators:

1+4x=A(x2+4)+(Bx+C)(xβˆ’3)(ii)1 + 4x = A(x^2 + 4) + (Bx + C)(x - 3) \tag{ii}

Step 2: Substitute x=3x = 3

To solve for AA, substitute x=3x = 3 into equation (ii), which simplifies the equation:

1+4(3)=A(32+4)+0⇒13=A(9+4)⇒13=13A⇒A=11 + 4(3) = A(3^2 + 4) + 0 \quad \Rightarrow \quad 13 = A(9 + 4) \quad \Rightarrow \quad 13 = 13A \quad \Rightarrow \quad A = 1

Step 3: Compare coefficients

Now, we equate the coefficients of x2x^2, xx, and the constant term on both sides of equation (ii).

  • Coefficient of x2x^2: 0=A+Bβ‡’B=βˆ’A=βˆ’10 = A + B \quad \Rightarrow \quad B = -A = -1.
  • Coefficient of xx: 4=βˆ’3B+Cβ‡’C=4+3B=4+3(βˆ’1)=14 = -3B + C \quad \Rightarrow \quad C = 4 + 3B = 4 + 3(-1) = 1.

Step 4: Rewrite the integral

We now substitute the values of AA, BB, and CC into the partial fraction decomposition:

1+4x(xβˆ’3)(x2+4)=1xβˆ’3+βˆ’x+1x2+4\frac{1+4x}{(x-3)(x^2+4)} = \frac{1}{x-3} + \frac{-x + 1}{x^2 + 4}

The integral becomes:

∫1xβˆ’3,dx+βˆ«βˆ’x+1x2+4,dx\int \frac{1}{x-3} , dx + \int \frac{-x + 1}{x^2 + 4} , dx

Step 5: Solve each integral

Now, we integrate the two parts separately:

  • The first integral is straightforward:
∫1xβˆ’3,dx=ln⁑∣xβˆ’3∣ \int \frac{1}{x-3} , dx = \ln |x-3|
  • For the second integral, split it into two parts:
βˆ«βˆ’x+1x2+4,dx=βˆ’βˆ«xx2+4,dx+∫1x2+4,dx \int \frac{-x + 1}{x^2 + 4} , dx = - \int \frac{x}{x^2 + 4} , dx + \int \frac{1}{x^2 + 4} , dx
  • The first part can be solved using a simple substitution (u=x2+4u = x^2 + 4, so du=2x,dxdu = 2x , dx):
∫xx2+4,dx=12ln⁑(x2+4) \int \frac{x}{x^2 + 4} , dx = \frac{1}{2} \ln(x^2 + 4)
  • The second part is a standard arctangent integral:
∫1x2+4,dx=12tanβ‘βˆ’1(x2) \int \frac{1}{x^2 + 4} , dx = \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right)

Step 6: Combine all parts

Finally, combining all the results, we get the solution:

ln⁑∣xβˆ’3βˆ£βˆ’12ln⁑(x2+4)+12tanβ‘βˆ’1(x2)+C\ln |x-3| - \frac{1}{2} \ln(x^2 + 4) + \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right) + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Splitting a rational function into simpler fractions for easier integration.
  • Basic Integrals:
    • ∫1xβˆ’a,dx=ln⁑∣xβˆ’a∣\int \frac{1}{x-a} , dx = \ln|x-a|
    • ∫1x2+a2,dx=1atanβ‘βˆ’1(xa)\int \frac{1}{x^2 + a^2} , dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)

Summary of Steps

  1. Set up the partial fraction decomposition:
    1+4x(xβˆ’3)(x2+4)=Axβˆ’3+Bx+Cx2+4\frac{1+4x}{(x-3)(x^2+4)} = \frac{A}{x-3} + \frac{B x + C}{x^2 + 4}

  2. Multiply both sides by the common denominator (xβˆ’3)(x2+4)(x-3)(x^2+4) and simplify.

  3. Substitute x=3x = 3 to find AA.

  4. Compare the coefficients of x2x^2, xx, and the constant term to find BB and CC.

  5. Rewrite the integral using the values of AA, BB, and CC: ∫1xβˆ’3,dx+βˆ«βˆ’x+1x2+4,dx\int \frac{1}{x-3} , dx + \int \frac{-x + 1}{x^2 + 4} , dx

  6. Solve each integral:

    • The first is ln⁑∣xβˆ’3∣\ln |x-3|.
    • The second splits into two parts: βˆ’12ln⁑(x2+4)-\frac{1}{2} \ln(x^2 + 4) and 12tanβ‘βˆ’1(x2)\frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right).
  7. Combine all the results for the final answer.