Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-22

Question Statement

Evaluate the integral:
∫12x3+8,dx\int \frac{12}{x^3 + 8} , dx


Background and Explanation

This is an integration problem involving a rational function with a cubic denominator. Recognize that the denominator can be factored as a sum of cubes: x3+8=(x+2)(x2βˆ’2x+4)x^3 + 8 = (x + 2)(x^2 - 2x + 4)

This suggests the use of partial fraction decomposition to break the expression into simpler components for easier integration.


Solution

We start by factoring the denominator: x3+8=(x+2)(x2βˆ’2x+4)x^3 + 8 = (x + 2)(x^2 - 2x + 4)

Thus, we can express the integral as: ∫12(x+2)(x2βˆ’2x+4),dx\int \frac{12}{(x+2)(x^2 - 2x + 4)} , dx

We apply partial fraction decomposition: 12(x+2)(x2βˆ’2x+4)=Ax+2+Bx+Cx2βˆ’2x+4(i)\frac{12}{(x+2)(x^2 - 2x + 4)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2x + 4} \quad \text{(i)}

Multiplying both sides by the denominator (x+2)(x2βˆ’2x+4)(x+2)(x^2 - 2x + 4) to clear the fractions: 12=A(x2βˆ’2x+4)+(Bx+C)(x+2)(ii)12 = A(x^2 - 2x + 4) + (Bx + C)(x + 2) \quad \text{(ii)}

Now, let’s solve for the constants AA, BB, and CC:

  1. Substitute x=βˆ’2x = -2 into equation (ii): 12=A[(βˆ’2)2βˆ’2(βˆ’2)+4]+012 = A \left[ (-2)^2 - 2(-2) + 4 \right] + 0 12=A(4+4+4)12 = A(4 + 4 + 4) 12=A(12)β‡’A=112 = A(12) \quad \Rightarrow \quad A = 1

  2. Now, comparing coefficients of x2x^2 and xx from both sides of equation (ii):

    • From the x2x^2-terms:
      0=A+Bβ‡’B=βˆ’10 = A + B \quad \Rightarrow \quad B = -1

    • From the x0x^0-terms:
      12=4A+2C⇒12=4(1)+2C12 = 4A + 2C \quad \Rightarrow \quad 12 = 4(1) + 2C 12=4+2C⇒C=412 = 4 + 2C \quad \Rightarrow \quad C = 4

Thus, we have the values: A=1,B=βˆ’1,C=4A = 1, \quad B = -1, \quad C = 4

Now, substituting these into equation (i), we can rewrite the integral as: ∫12(x+2)(x2βˆ’2x+4),dx=∫1x+2,dxβˆ’βˆ«xβˆ’1x2βˆ’2x+4,dx\int \frac{12}{(x+2)(x^2 - 2x + 4)} , dx = \int \frac{1}{x+2} , dx - \int \frac{x - 1}{x^2 - 2x + 4} , dx

Next, split the second term into two integrals: =∫1x+2,dxβˆ’βˆ«xx2βˆ’2x+4,dx+∫1x2βˆ’2x+4,dx= \int \frac{1}{x+2} , dx - \int \frac{x}{x^2 - 2x + 4} , dx + \int \frac{1}{x^2 - 2x + 4} , dx

  1. The first integral is straightforward: ∫1x+2,dx=ln⁑∣x+2∣\int \frac{1}{x+2} , dx = \ln |x+2|

  2. For the second integral, use substitution: Let u=x2βˆ’2x+4u = x^2 - 2x + 4, so du=(2xβˆ’2)dxdu = (2x - 2)dx, and rewrite the integral: ∫xx2βˆ’2x+4,dx=12ln⁑(x2βˆ’2x+4)\int \frac{x}{x^2 - 2x + 4} , dx = \frac{1}{2} \ln \left( x^2 - 2x + 4 \right)

  3. The third integral involves a standard arctangent form: ∫1x2βˆ’2x+4,dx=13tanβ‘βˆ’1(xβˆ’13)\int \frac{1}{x^2 - 2x + 4} , dx = \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{x-1}{\sqrt{3}} \right)

Thus, the final solution is: ln⁑∣x+2βˆ£βˆ’12ln⁑(x2βˆ’2x+4)+3tanβ‘βˆ’1(xβˆ’13)+C\ln |x+2| - \frac{1}{2} \ln (x^2 - 2x + 4) + \sqrt{3} \tan^{-1} \left( \frac{x-1}{\sqrt{3}} \right) + C


Key Formulas or Methods Used

  • Sum of cubes formula:
    x3+a3=(x+a)(x2βˆ’ax+a2)x^3 + a^3 = (x + a)(x^2 - ax + a^2)

  • Partial fraction decomposition:
    Break down complex rational functions into simpler components.

  • Standard integrals:

    • ∫1x+2,dx=ln⁑∣x+2∣\int \frac{1}{x+2} , dx = \ln |x+2|
    • ∫1x2+a2,dx=1atanβ‘βˆ’1(xa)\int \frac{1}{x^2 + a^2} , dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right)

Summary of Steps

  1. Factor the denominator:
    x3+8=(x+2)(x2βˆ’2x+4)x^3 + 8 = (x + 2)(x^2 - 2x + 4)

  2. Apply partial fraction decomposition: 12(x+2)(x2βˆ’2x+4)=Ax+2+Bx+Cx2βˆ’2x+4\frac{12}{(x+2)(x^2 - 2x + 4)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2x + 4}

  3. Solve for AA, BB, and CC using substitution and comparison of coefficients: A=1,B=βˆ’1,C=4A = 1, \quad B = -1, \quad C = 4

  4. Rewrite the integral and split into simpler integrals: ∫1x+2,dxβˆ’βˆ«xx2βˆ’2x+4,dx+∫1x2βˆ’2x+4,dx\int \frac{1}{x+2} , dx - \int \frac{x}{x^2 - 2x + 4} , dx + \int \frac{1}{x^2 - 2x + 4} , dx

  5. Integrate each term:

    • ∫1x+2,dx=ln⁑∣x+2∣\int \frac{1}{x+2} , dx = \ln |x+2|
    • ∫xx2βˆ’2x+4,dx=12ln⁑(x2βˆ’2x+4)\int \frac{x}{x^2 - 2x + 4} , dx = \frac{1}{2} \ln (x^2 - 2x + 4)
    • ∫1x2βˆ’2x+4,dx=13tanβ‘βˆ’1(xβˆ’13)\int \frac{1}{x^2 - 2x + 4} , dx = \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{x-1}{\sqrt{3}} \right)
  6. Combine all results to get the final solution: ln⁑∣x+2βˆ£βˆ’12ln⁑(x2βˆ’2x+4)+3tanβ‘βˆ’1(xβˆ’13)+C\ln |x+2| - \frac{1}{2} \ln (x^2 - 2x + 4) + \sqrt{3} \tan^{-1} \left( \frac{x-1}{\sqrt{3}} \right) + C