Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-23

Question Statement

Evaluate the integral:

∫9x+6x2βˆ’8,dx\int \frac{9x + 6}{x^2 - 8} , dx

Background and Explanation

This is an integral involving a rational function with a quadratic denominator. To solve it, we will decompose the expression using partial fraction decomposition. The denominator x2βˆ’8x^2 - 8 can be factored into (xβˆ’2)(x2+2x+4)(x - 2)(x^2 + 2x + 4). The method we will use is to express the integrand as a sum of simpler fractions that can be integrated individually.


Solution

Step 1: Factor the denominator

We start by recognizing the factored form of the denominator:

x2βˆ’8=(xβˆ’2)(x2+2x+4)x^2 - 8 = (x - 2)(x^2 + 2x + 4)

Thus, the integral becomes:

∫9x+6(xβˆ’2)(x2+2x+4),dx\int \frac{9x + 6}{(x - 2)(x^2 + 2x + 4)} , dx

Step 2: Apply partial fraction decomposition

We assume that the integrand can be decomposed into the form:

9x+6(xβˆ’2)(x2+2x+4)=Axβˆ’2+Bx+Cx2+2x+4\frac{9x + 6}{(x - 2)(x^2 + 2x + 4)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 2x + 4}

Step 3: Multiply through by the common denominator

To eliminate the denominators, multiply both sides of the equation by (xβˆ’2)(x2+2x+4)(x - 2)(x^2 + 2x + 4):

9x+6=A(x2+2x+4)+(Bx+C)(xβˆ’2)9x + 6 = A(x^2 + 2x + 4) + (Bx + C)(x - 2)

Step 4: Expand both sides

Now, expand both sides of the equation:

9x+6=A(x2+2x+4)+(Bx+C)(xβˆ’2)9x + 6 = A(x^2 + 2x + 4) + (Bx + C)(x - 2)

Expanding the right-hand side:

9x+6=A(x2+2x+4)+Bx(xβˆ’2)+C(xβˆ’2)9x + 6 = A(x^2 + 2x + 4) + Bx(x - 2) + C(x - 2)

This simplifies to:

9x+6=A(x2+2x+4)+Bx2βˆ’2Bx+Cxβˆ’2C9x + 6 = A(x^2 + 2x + 4) + Bx^2 - 2Bx + Cx - 2C

Step 5: Set up the system of equations

Now, collect terms:

9x+6=(A+B)x2+(2Aβˆ’2B+C)x+(4Aβˆ’2C)9x + 6 = (A + B)x^2 + (2A - 2B + C)x + (4A - 2C)

Equate the coefficients of like powers of xx on both sides:

  1. For x2x^2: A+B=0A + B = 0
  2. For xx: 2Aβˆ’2B+C=92A - 2B + C = 9
  3. For the constant term: 4Aβˆ’2C=64A - 2C = 6

Step 6: Solve the system of equations

From equation (1):

A+B=0β‡’B=βˆ’AA + B = 0 \quad \Rightarrow \quad B = -A

Substitute B=βˆ’AB = -A into the other two equations:

From equation (2):

2Aβˆ’2(βˆ’A)+C=9β‡’4A+C=92A - 2(-A) + C = 9 \quad \Rightarrow \quad 4A + C = 9

From equation (3):

4Aβˆ’2C=64A - 2C = 6

Now, solve these two equations:

  1. 4A+C=94A + C = 9
  2. 4Aβˆ’2C=64A - 2C = 6

Multiply the first equation by 2:

8A+2C=188A + 2C = 18

Now, add it to the second equation:

(8A+2C)+(4Aβˆ’2C)=18+6(8A + 2C) + (4A - 2C) = 18 + 6

This simplifies to:

12A=24β‡’A=212A = 24 \quad \Rightarrow \quad A = 2

Now, substitute A=2A = 2 into B=βˆ’AB = -A:

B=βˆ’2B = -2

Finally, substitute A=2A = 2 into 4A+C=94A + C = 9:

4(2)+C=9β‡’8+C=9β‡’C=14(2) + C = 9 \quad \Rightarrow \quad 8 + C = 9 \quad \Rightarrow \quad C = 1

Step 7: Rewrite the integral

Now that we have the values for AA, BB, and CC, we can rewrite the partial fraction decomposition:

9x+6(xβˆ’2)(x2+2x+4)=2xβˆ’2+βˆ’2x+1x2+2x+4\frac{9x + 6}{(x - 2)(x^2 + 2x + 4)} = \frac{2}{x - 2} + \frac{-2x + 1}{x^2 + 2x + 4}

Thus, the integral becomes:

∫9x+6(xβˆ’2)(x2+2x+4),dx=2∫dxxβˆ’2βˆ’βˆ«2x+2βˆ’3x2+2x+4,dx\int \frac{9x + 6}{(x - 2)(x^2 + 2x + 4)} , dx = 2 \int \frac{dx}{x - 2} - \int \frac{2x + 2 - 3}{x^2 + 2x + 4} , dx

Step 8: Integrate each term

The first term is straightforward:

2∫dxxβˆ’2=2ln⁑∣xβˆ’2∣2 \int \frac{dx}{x - 2} = 2 \ln |x - 2|

For the second term, split it into two parts:

βˆ’βˆ«2x+2x2+2x+4,dx+3∫1x2+2x+4,dx-\int \frac{2x + 2}{x^2 + 2x + 4} , dx + 3 \int \frac{1}{x^2 + 2x + 4} , dx

For the first part:

βˆ’βˆ«2x+2x2+2x+4,dx=βˆ’ln⁑(x2+2x+4)-\int \frac{2x + 2}{x^2 + 2x + 4} , dx = -\ln(x^2 + 2x + 4)

For the second part, use the standard integral for arctangent:

3∫1x2+2x+4,dx=3β‹…13tanβ‘βˆ’1(xβˆ’13)3 \int \frac{1}{x^2 + 2x + 4} , dx = 3 \cdot \frac{1}{\sqrt{3}} \tan^{-1}\left( \frac{x - 1}{\sqrt{3}} \right)

Step 9: Combine the results

Finally, combine all the results:

∫9x+6(xβˆ’2)(x2+2x+4),dx=2ln⁑∣xβˆ’2βˆ£βˆ’ln⁑(x2+2x+4)+3tanβ‘βˆ’1(xβˆ’13)+C\int \frac{9x + 6}{(x - 2)(x^2 + 2x + 4)} , dx = 2 \ln |x - 2| - \ln(x^2 + 2x + 4) + \sqrt{3} \tan^{-1}\left( \frac{x - 1}{\sqrt{3}} \right) + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Decompose the rational function into simpler fractions to simplify integration.
  • Basic Integration Formulas:
    • ∫dxxβˆ’a=ln⁑∣xβˆ’a∣+C\int \frac{dx}{x - a} = \ln |x - a| + C
    • ∫dxx2+ax+b=1btanβ‘βˆ’1(xβˆ’hb)+C\int \frac{dx}{x^2 + ax + b} = \frac{1}{\sqrt{b}} \tan^{-1} \left( \frac{x - h}{\sqrt{b}} \right) + C

Summary of Steps

  1. Factor the denominator as (xβˆ’2)(x2+2x+4)(x - 2)(x^2 + 2x + 4).
  2. Decompose the integrand using partial fractions.
  3. Solve for constants AA, BB, and CC using a system of equations.
  4. Rewrite the integral in simpler parts.
  5. Integrate each part separately.
  6. Combine the results to get the final answer.