Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-25

Question Statement

Evaluate the following integral:

∫2x2βˆ’xβˆ’7(x+2)2(x2+x+1),dx\int \frac{2 x^{2}-x-7}{(x+2)^{2}(x^{2}+x+1)} , dx

Background and Explanation

This problem involves integrating a rational function, which can be simplified using partial fraction decomposition. The method of partial fractions helps express a complex fraction as the sum of simpler fractions, making integration easier. In this case, we decompose the given rational function into terms that can be integrated directly.


Solution

We begin by setting up the partial fraction decomposition:

2x2βˆ’xβˆ’7(x+2)2(x2+x+1)=Ax+2+B(x+2)2+Cx+Dx2+x+1(i)\frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} = \frac{A}{x+2} + \frac{B}{(x+2)^{2}} + \frac{C x + D}{x^{2}+x+1} \tag{i}

Step 1: Multiply both sides by (x2+x+1)(x+2)2(x^2+x+1)(x+2)^2 to clear the denominators:

2x2βˆ’xβˆ’7=A(x+2)(x2+x+1)+B(x2+x+1)+(Cx+D)(x+2)2(ii)2x^2 - x - 7 = A(x+2)(x^2 + x + 1) + B(x^2 + x + 1) + (Cx + D)(x+2)^2 \tag{ii}

Step 2: Set x=βˆ’2x = -2 to solve for BB:

Substituting x=βˆ’2x = -2 into equation (ii):

2(βˆ’2)2βˆ’(βˆ’2)βˆ’7=B((βˆ’2)2βˆ’2+1)2(-2)^2 - (-2) - 7 = B((-2)^2 - 2 + 1)

Simplifying:

8+2βˆ’7=B(4βˆ’2+1)β‡’B=18 + 2 - 7 = B(4 - 2 + 1) \quad \Rightarrow \quad B = 1

Step 3: Compare coefficients of powers of xx on both sides to solve for AA, CC, and DD:

From equation (ii), we compare the coefficients of x3x^3, x2x^2, and xx:

  1. 0=A+C0 = A + C β‡’C=βˆ’A\Rightarrow C = -A
  2. 2=3A+B+4C+D2 = 3A + B + 4C + D β‡’2=3A+1+4(βˆ’A)+D\Rightarrow 2 = 3A + 1 + 4(-A) + D
  3. βˆ’1=3A+B+4C+4D-1 = 3A + B + 4C + 4D
  4. βˆ’7=2A+B+4D-7 = 2A + B + 4D

By solving these equations, we find:

  • A=βˆ’2A = -2
  • C=2C = 2
  • D=βˆ’1D = -1

Step 4: Substitute the values of AA, BB, CC, and DD into the original decomposition:

∫2x2βˆ’xβˆ’7(x+2)2(x2+x+1),dx=∫(βˆ’2x+2+1(x+2)2+2xβˆ’1x2+x+1)dx\int \frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} , dx = \int \left( \frac{-2}{x+2} + \frac{1}{(x+2)^2} + \frac{2x-1}{x^2+x+1} \right) dx

Step 5: Integrate each term:

  • The integral of βˆ’2x+2\frac{-2}{x+2} is βˆ’2ln⁑∣x+2∣-2 \ln |x+2|
  • The integral of 1(x+2)2\frac{1}{(x+2)^2} is βˆ’1x+2-\frac{1}{x+2}
  • The integral of 2x+1x2+x+1\frac{2x+1}{x^2+x+1} is ln⁑(x2+x+1)\ln(x^2 + x + 1)
  • The integral of 2(x+12)2+(32)2\frac{2}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} is 43tanβ‘βˆ’1(x+1232)\frac{4}{\sqrt{3}} \tan^{-1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right)

Final Answer:

Thus, the integral evaluates to:

∫2x2βˆ’xβˆ’7(x+2)2(x2+x+1),dx=2ln⁑∣x+2βˆ£βˆ’1x+2+ln⁑(x2+x+1)βˆ’43tanβ‘βˆ’1(2x+13)+C\int \frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} , dx = 2 \ln |x+2| - \frac{1}{x+2} + \ln(x^2 + x + 1) - \frac{4}{\sqrt{3}} \tan^{-1} \left( \frac{2x+1}{\sqrt{3}} \right) + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Used to express the rational function as the sum of simpler fractions.
  • Basic Integration Rules: For rational functions, the integral of 1x+a\frac{1}{x+a} is ln⁑∣x+a∣\ln |x+a|, and the integral of 1(x+a)2\frac{1}{(x+a)^2} is βˆ’1x+a\frac{-1}{x+a}.
  • Arctangent Integral: The integral of 1(x+h)2+a2\frac{1}{(x+h)^2 + a^2} is 1atanβ‘βˆ’1(x+ha)\frac{1}{a} \tan^{-1} \left( \frac{x+h}{a} \right).

Summary of Steps

  1. Set up the partial fraction decomposition of the rational function.
  2. Multiply both sides by the common denominator to eliminate fractions.
  3. Substitute x=βˆ’2x = -2 to find BB.
  4. Compare coefficients of powers of xx to solve for AA, CC, and DD.
  5. Substitute values of AA, BB, CC, and DD into the partial fraction decomposition.
  6. Integrate each term and combine the results.
  7. Write the final solution, including the constant of integration CC.