Question Statement
Evaluate the following integral:
β« 2 x 2 β x β 7 ( x + 2 ) 2 ( x 2 + x + 1 ) , d x \int \frac{2 x^{2}-x-7}{(x+2)^{2}(x^{2}+x+1)} , dx β« ( x + 2 ) 2 ( x 2 + x + 1 ) 2 x 2 β x β 7 β , d x
Background and Explanation
This problem involves integrating a rational function, which can be simplified using partial fraction decomposition. The method of partial fractions helps express a complex fraction as the sum of simpler fractions, making integration easier. In this case, we decompose the given rational function into terms that can be integrated directly.
Solution
We begin by setting up the partial fraction decomposition:
2 x 2 β x β 7 ( x + 2 ) 2 ( x 2 + x + 1 ) = A x + 2 + B ( x + 2 ) 2 + C x + D x 2 + x + 1 (i) \frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} = \frac{A}{x+2} + \frac{B}{(x+2)^{2}} + \frac{C x + D}{x^{2}+x+1} \tag{i} ( x + 2 ) 2 ( x 2 + x + 1 ) 2 x 2 β x β 7 β = x + 2 A β + ( x + 2 ) 2 B β + x 2 + x + 1 C x + D β ( i )
Step 1: Multiply both sides by ( x 2 + x + 1 ) ( x + 2 ) 2 (x^2+x+1)(x+2)^2 ( x 2 + x + 1 ) ( x + 2 ) 2 to clear the denominators:
2 x 2 β x β 7 = A ( x + 2 ) ( x 2 + x + 1 ) + B ( x 2 + x + 1 ) + ( C x + D ) ( x + 2 ) 2 (ii) 2x^2 - x - 7 = A(x+2)(x^2 + x + 1) + B(x^2 + x + 1) + (Cx + D)(x+2)^2 \tag{ii} 2 x 2 β x β 7 = A ( x + 2 ) ( x 2 + x + 1 ) + B ( x 2 + x + 1 ) + ( C x + D ) ( x + 2 ) 2 ( ii )
Step 2: Set x = β 2 x = -2 x = β 2 to solve for B B B :
Substituting x = β 2 x = -2 x = β 2 into equation (ii):
2 ( β 2 ) 2 β ( β 2 ) β 7 = B ( ( β 2 ) 2 β 2 + 1 ) 2(-2)^2 - (-2) - 7 = B((-2)^2 - 2 + 1) 2 ( β 2 ) 2 β ( β 2 ) β 7 = B (( β 2 ) 2 β 2 + 1 )
Simplifying:
8 + 2 β 7 = B ( 4 β 2 + 1 ) β B = 1 8 + 2 - 7 = B(4 - 2 + 1) \quad \Rightarrow \quad B = 1 8 + 2 β 7 = B ( 4 β 2 + 1 ) β B = 1
Step 3: Compare coefficients of powers of x x x on both sides to solve for A A A , C C C , and D D D :
From equation (ii), we compare the coefficients of x 3 x^3 x 3 , x 2 x^2 x 2 , and x x x :
0 = A + C 0 = A + C 0 = A + C β C = β A \Rightarrow C = -A β C = β A
2 = 3 A + B + 4 C + D 2 = 3A + B + 4C + D 2 = 3 A + B + 4 C + D β 2 = 3 A + 1 + 4 ( β A ) + D \Rightarrow 2 = 3A + 1 + 4(-A) + D β 2 = 3 A + 1 + 4 ( β A ) + D
β 1 = 3 A + B + 4 C + 4 D -1 = 3A + B + 4C + 4D β 1 = 3 A + B + 4 C + 4 D
β 7 = 2 A + B + 4 D -7 = 2A + B + 4D β 7 = 2 A + B + 4 D
By solving these equations, we find:
A = β 2 A = -2 A = β 2
C = 2 C = 2 C = 2
D = β 1 D = -1 D = β 1
Step 4: Substitute the values of A A A , B B B , C C C , and D D D into the original decomposition:
β« 2 x 2 β x β 7 ( x + 2 ) 2 ( x 2 + x + 1 ) , d x = β« ( β 2 x + 2 + 1 ( x + 2 ) 2 + 2 x β 1 x 2 + x + 1 ) d x \int \frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} , dx = \int \left( \frac{-2}{x+2} + \frac{1}{(x+2)^2} + \frac{2x-1}{x^2+x+1} \right) dx β« ( x + 2 ) 2 ( x 2 + x + 1 ) 2 x 2 β x β 7 β , d x = β« ( x + 2 β 2 β + ( x + 2 ) 2 1 β + x 2 + x + 1 2 x β 1 β ) d x
Step 5: Integrate each term:
The integral of β 2 x + 2 \frac{-2}{x+2} x + 2 β 2 β is β 2 ln β‘ β£ x + 2 β£ -2 \ln |x+2| β 2 ln β£ x + 2β£
The integral of 1 ( x + 2 ) 2 \frac{1}{(x+2)^2} ( x + 2 ) 2 1 β is β 1 x + 2 -\frac{1}{x+2} β x + 2 1 β
The integral of 2 x + 1 x 2 + x + 1 \frac{2x+1}{x^2+x+1} x 2 + x + 1 2 x + 1 β is ln β‘ ( x 2 + x + 1 ) \ln(x^2 + x + 1) ln ( x 2 + x + 1 )
The integral of 2 ( x + 1 2 ) 2 + ( 3 2 ) 2 \frac{2}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} ( x + 2 1 β ) 2 + ( 2 3 β β ) 2 2 β is 4 3 tan β‘ β 1 ( x + 1 2 3 2 ) \frac{4}{\sqrt{3}} \tan^{-1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) 3 β 4 β tan β 1 ( 2 3 β β x + 2 1 β β )
Final Answer:
Thus, the integral evaluates to:
β« 2 x 2 β x β 7 ( x + 2 ) 2 ( x 2 + x + 1 ) , d x = 2 ln β‘ β£ x + 2 β£ β 1 x + 2 + ln β‘ ( x 2 + x + 1 ) β 4 3 tan β‘ β 1 ( 2 x + 1 3 ) + C \int \frac{2 x^{2} - x - 7}{(x+2)^{2}(x^{2}+x+1)} , dx = 2 \ln |x+2| - \frac{1}{x+2} + \ln(x^2 + x + 1) - \frac{4}{\sqrt{3}} \tan^{-1} \left( \frac{2x+1}{\sqrt{3}} \right) + C β« ( x + 2 ) 2 ( x 2 + x + 1 ) 2 x 2 β x β 7 β , d x = 2 ln β£ x + 2β£ β x + 2 1 β + ln ( x 2 + x + 1 ) β 3 β 4 β tan β 1 ( 3 β 2 x + 1 β ) + C
Partial Fraction Decomposition : Used to express the rational function as the sum of simpler fractions.
Basic Integration Rules : For rational functions, the integral of 1 x + a \frac{1}{x+a} x + a 1 β is ln β‘ β£ x + a β£ \ln |x+a| ln β£ x + a β£ , and the integral of 1 ( x + a ) 2 \frac{1}{(x+a)^2} ( x + a ) 2 1 β is β 1 x + a \frac{-1}{x+a} x + a β 1 β .
Arctangent Integral : The integral of 1 ( x + h ) 2 + a 2 \frac{1}{(x+h)^2 + a^2} ( x + h ) 2 + a 2 1 β is 1 a tan β‘ β 1 ( x + h a ) \frac{1}{a} \tan^{-1} \left( \frac{x+h}{a} \right) a 1 β tan β 1 ( a x + h β ) .
Summary of Steps
Set up the partial fraction decomposition of the rational function.
Multiply both sides by the common denominator to eliminate fractions.
Substitute x = β 2 x = -2 x = β 2 to find B B B .
Compare coefficients of powers of x x x to solve for A A A , C C C , and D D D .
Substitute values of A A A , B B B , C C C , and D D D into the partial fraction decomposition.
Integrate each term and combine the results.
Write the final solution , including the constant of integration C C C .