Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-28

Question Statement

Evaluate the integral:

∫6a2(x2+a2)(x2+4a2),dx\int \frac{6 a^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+4 a^{2}\right)} , dx

Background and Explanation

This integral involves a rational function with quadratic terms in the denominator. The goal is to decompose the expression into simpler terms using partial fractions. To solve this, we express the given function as a sum of two simpler fractions, each corresponding to one of the quadratic factors in the denominator.


Solution

Step 1: Set up partial fraction decomposition

We begin by assuming that the integrand can be written as:

6a2(x2+a2)(x2+4a2)=Ax+Bx2+a2+Cx+Dx2+4a2\frac{6 a^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+4 a^{2}\right)} = \frac{A x + B}{x^{2} + a^{2}} + \frac{C x + D}{x^{2} + 4a^{2}}

Step 2: Multiply both sides by the common denominator

Multiply both sides of the equation by (x2+a2)(x2+4a2)(x^2 + a^2)(x^2 + 4a^2) to eliminate the denominators:

6a2=(Ax+B)(x2+4a2)+(Cx+D)(x2+a2)6 a^{2} = (A x + B)(x^2 + 4a^2) + (C x + D)(x^2 + a^2)

Step 3: Expand both sides

Next, expand both sides:

6a2=A(x3+4a2x)+B(x2+4a2)+C(x3+a2x)+D(x2+a2)6 a^2 = A(x^3 + 4a^2 x) + B(x^2 + 4a^2) + C(x^3 + a^2 x) + D(x^2 + a^2)

This simplifies to:

6a2=(A+C)x3+(B+D)x2+(4a2A+a2C)x+(4a3B+Da2)6 a^2 = (A + C) x^3 + (B + D) x^2 + (4a^2 A + a^2 C) x + (4a^3 B + D a^2)

Step 4: Equate coefficients

Now, we compare the coefficients of like powers of xx from both sides of the equation.

  • For x3x^3: A+C=0A + C = 0
  • For x2x^2: B+D=0B + D = 0
  • For xx: 4a2A+a2C=04 a^2 A + a^2 C = 0
  • For the constant term: 4a3B+Da2=6a24 a^3 B + D a^2 = 6 a^2

Step 5: Solve for constants

From the equation A+C=0A + C = 0, we can conclude that C=βˆ’AC = -A.

Substitute C=βˆ’AC = -A into the equation 4a2A+a2C=04 a^2 A + a^2 C = 0:

4a2A+a2(βˆ’A)=0β‡’A=04 a^2 A + a^2 (-A) = 0 \quad \Rightarrow A = 0

Since A=0A = 0, we also have C=0C = 0.

Now, substitute C=0C = 0 into the equation B+D=0B + D = 0, yielding B=βˆ’DB = -D.

Substitute into the constant equation 4a3B+Da2=6a24 a^3 B + D a^2 = 6 a^2:

4a3B+Da2=6a2β‡’4a3B+(βˆ’B)a2=6a24 a^3 B + D a^2 = 6 a^2 \quad \Rightarrow 4 a^3 B + (-B) a^2 = 6 a^2

This simplifies to:

(4a3βˆ’a2)B=6a2β‡’B=2(4 a^3 - a^2) B = 6 a^2 \quad \Rightarrow B = 2

Thus, B=2B = 2 and D=βˆ’2D = -2.


Step 6: Rewrite the expression

We can now rewrite the integrand as:

6a2(x2+a2)(x2+4a2)=2x2+a2βˆ’2x2+4a2\frac{6 a^2}{(x^2 + a^2)(x^2 + 4a^2)} = \frac{2}{x^2 + a^2} - \frac{2}{x^2 + 4a^2}

Step 7: Integrate

Now, we can integrate each term separately:

∫2x2+a2,dx=2atanβ‘βˆ’1(xa)\int \frac{2}{x^2 + a^2} , dx = \frac{2}{a} \tan^{-1}\left(\frac{x}{a}\right) ∫2x2+4a2,dx=22atanβ‘βˆ’1(x2a)\int \frac{2}{x^2 + 4a^2} , dx = \frac{2}{2a} \tan^{-1}\left(\frac{x}{2a}\right)

Thus, the final solution is:

∫6a2(x2+a2)(x2+4a2),dx=2atanβ‘βˆ’1(xa)βˆ’1atanβ‘βˆ’1(x2a)+C\int \frac{6 a^2}{(x^2 + a^2)(x^2 + 4a^2)} , dx = \frac{2}{a} \tan^{-1}\left(\frac{x}{a}\right) - \frac{1}{a} \tan^{-1}\left(\frac{x}{2a}\right) + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Used to break down the complex rational function into simpler terms for easier integration.
  • Integral of the inverse tangent function:
∫1x2+a2,dx=1atanβ‘βˆ’1(xa) \int \frac{1}{x^2 + a^2} , dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)

Summary of Steps

  1. Set up partial fraction decomposition: 6a2(x2+a2)(x2+4a2)=Ax+Bx2+a2+Cx+Dx2+4a2\frac{6 a^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+4 a^{2}\right)} = \frac{A x + B}{x^{2} + a^{2}} + \frac{C x + D}{x^{2} + 4a^{2}}
  2. Multiply by the common denominator and expand both sides.
  3. Equate the coefficients of x3x^3, x2x^2, xx, and the constant term.
  4. Solve the resulting system of equations to find A=0A = 0, B=2B = 2, C=0C = 0, and D=βˆ’2D = -2.
  5. Rewrite the integrand as: 6a2(x2+a2)(x2+4a2)=2x2+a2βˆ’2x2+4a2\frac{6 a^2}{(x^2 + a^2)(x^2 + 4a^2)} = \frac{2}{x^2 + a^2} - \frac{2}{x^2 + 4a^2}
  6. Integrate each term and combine the results to get the final solution: ∫6a2(x2+a2)(x2+4a2),dx=2atanβ‘βˆ’1(xa)βˆ’1atanβ‘βˆ’1(x2a)+C\int \frac{6 a^2}{(x^2 + a^2)(x^2 + 4a^2)} , dx = \frac{2}{a} \tan^{-1}\left(\frac{x}{a}\right) - \frac{1}{a} \tan^{-1}\left(\frac{x}{2a}\right) + C