Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-29

Question Statement

Evaluate the following integral:

∫2x2βˆ’2x4+x2+1,dx\int \frac{2 x^{2}-2}{x^{4} + x^{2} + 1} , dx

Background and Explanation

This problem involves integrating a rational function where the denominator is a quartic expression. A typical approach for such integrals is partial fraction decomposition, which breaks down the rational function into simpler fractions that are easier to integrate. To apply this technique, we first need to factor the denominator and express the function as a sum of simpler fractions.


Solution

Step 1: Factor the Denominator

The denominator x4+x2+1x^{4} + x^{2} + 1 can be rewritten in a factored form:

x4+x2+1=(x2+x+1)(x2βˆ’x+1)x^{4} + x^{2} + 1 = \left(x^{2} + x + 1\right)\left(x^{2} - x + 1\right)

We use this factorization to express the given rational function in a more manageable form.

Step 2: Partial Fraction Decomposition

We aim to express the integrand as the sum of two simpler fractions:

2x2βˆ’2(x2+x+1)(x2βˆ’x+1)=Ax+Bx2+x+1+Cx+Dx2βˆ’x+1\frac{2x^{2} - 2}{(x^{2} + x + 1)(x^{2} - x + 1)} = \frac{A x + B}{x^{2} + x + 1} + \frac{C x + D}{x^{2} - x + 1}

Multiplying both sides by the denominator (x2+x+1)(x2βˆ’x+1)(x^{2} + x + 1)(x^{2} - x + 1), we obtain:

2x2βˆ’2=(Ax+B)(x2βˆ’x+1)+(Cx+D)(x2+x+1)2 x^{2} - 2 = (A x + B)(x^{2} - x + 1) + (C x + D)(x^{2} + x + 1)

Step 3: Expand and Simplify

Expand both terms on the right-hand side:

2x2βˆ’2=(Ax+B)(x2βˆ’x+1)+(Cx+D)(x2+x+1)2 x^{2} - 2 = (A x + B)(x^{2} - x + 1) + (C x + D)(x^{2} + x + 1)

Expanding each term:

(Ax+B)(x2βˆ’x+1)=Ax3βˆ’Ax2+Ax+Bx2βˆ’Bx+B(A x + B)(x^{2} - x + 1) = A x^{3} - A x^{2} + A x + B x^{2} - B x + B (Cx+D)(x2+x+1)=Cx3+Cx2+Cx+Dx2+Dx+D(C x + D)(x^{2} + x + 1) = C x^{3} + C x^{2} + C x + D x^{2} + D x + D

Simplifying the equation:

2x2βˆ’2=(A+C)x3+(βˆ’A+B+C+D)x2+(Aβˆ’B+C+D)x+(B+D)2 x^{2} - 2 = (A + C) x^{3} + (-A + B + C + D) x^{2} + (A - B + C + D) x + (B + D)

Step 4: Equate Coefficients

Now, equate the coefficients of corresponding powers of xx on both sides of the equation.

  • Coefficient of x3x^{3}: A+C=0A + C = 0
  • Coefficient of x2x^{2}: βˆ’A+B+C+D=2-A + B + C + D = 2
  • Coefficient of xx: Aβˆ’B+C+D=0A - B + C + D = 0
  • Constant term: B+D=βˆ’2B + D = -2

Step 5: Solve the System of Equations

From A+C=0A + C = 0, we get C=βˆ’AC = -A. Substituting into the other equations:

  • From B+D=βˆ’2B + D = -2, we have D=βˆ’2βˆ’BD = -2 - B.
  • Substituting C=βˆ’AC = -A and D=βˆ’2βˆ’BD = -2 - B into Aβˆ’B+C+D=0A - B + C + D = 0, we get:
Aβˆ’Bβˆ’Aβˆ’2βˆ’B=0β‡’βˆ’2B=2β‡’B=βˆ’1A - B - A - 2 - B = 0 \quad \Rightarrow \quad -2B = 2 \quad \Rightarrow \quad B = -1

Substitute B=βˆ’1B = -1 into B+D=βˆ’2B + D = -2:

βˆ’1+D=βˆ’2β‡’D=βˆ’1-1 + D = -2 \quad \Rightarrow \quad D = -1

Now, substitute B=βˆ’1B = -1 and D=βˆ’1D = -1 into βˆ’A+B+C+D=2-A + B + C + D = 2:

βˆ’Aβˆ’1βˆ’Aβˆ’1=2β‡’βˆ’2Aβˆ’2=2β‡’A=βˆ’2-A - 1 - A - 1 = 2 \quad \Rightarrow \quad -2A - 2 = 2 \quad \Rightarrow \quad A = -2

Thus, C=βˆ’A=2C = -A = 2.

Step 6: Write the Partial Fractions

Now that we have the values of AA, BB, CC, and DD, we can rewrite the integrand:

2x2βˆ’2(x2+x+1)(x2βˆ’x+1)=βˆ’2xβˆ’1x2+x+1+2xβˆ’1x2βˆ’x+1\frac{2 x^{2} - 2}{(x^{2} + x + 1)(x^{2} - x + 1)} = \frac{-2x - 1}{x^{2} + x + 1} + \frac{2x - 1}{x^{2} - x + 1}

Step 7: Integrate the Terms

Now, we can integrate each term separately:

βˆ«βˆ’2xβˆ’1x2+x+1,dxand∫2xβˆ’1x2βˆ’x+1,dx\int \frac{-2x - 1}{x^{2} + x + 1} , dx \quad \text{and} \quad \int \frac{2x - 1}{x^{2} - x + 1} , dx

Both integrals are standard, resulting in the following:

βˆ’ln⁑∣x2+x+1∣+ln⁑∣x2βˆ’x+1∣+C-\ln |x^{2} + x + 1| + \ln |x^{2} - x + 1| + C

Thus, the final answer is:

ln⁑∣x2βˆ’x+1x2+x+1∣+C\ln \left|\frac{x^{2} - x + 1}{x^{2} + x + 1}\right| + C

Key Formulas or Methods Used

  • Partial Fraction Decomposition: This method breaks down the given rational function into simpler fractions.
  • Standard Integral Forms: Used for logarithmic integration of quadratic expressions.

Summary of Steps

  1. Factor the denominator x4+x2+1x^{4} + x^{2} + 1 into (x2+x+1)(x2βˆ’x+1)(x^{2} + x + 1)(x^{2} - x + 1).
  2. Set up the partial fraction decomposition with unknown coefficients AA, BB, CC, and DD.
  3. Expand the terms on the right-hand side and equate the coefficients of powers of xx.
  4. Solve the system of equations for AA, BB, CC, and DD.
  5. Rewrite the integrand using the values of the coefficients.
  6. Integrate each term, using the standard logarithmic integration.
  7. Simplify to get the final answer:
ln⁑∣x2βˆ’x+1x2+x+1∣+C\ln \left|\frac{x^{2} - x + 1}{x^{2} + x + 1}\right| + C