Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-30

Question Statement

Evaluate the integral:

∫3xβˆ’8(x2+x+2)(x2βˆ’x+2),dx\int \frac{3 x - 8}{(x^2 + x + 2)(x^2 - x + 2)} , dx

Background and Explanation

To solve this integral, we will use the method of partial fraction decomposition. This technique involves expressing the integrand as a sum of simpler fractions that can be easily integrated. In this case, we will decompose the rational function into two simpler fractions, each corresponding to one of the quadratic terms in the denominator.


Solution

We begin by assuming the following decomposition for the given rational function:

3xβˆ’8(x2+x+2)(x2βˆ’x+2)=Ax+Bx2+x+2+Cx+Dx2βˆ’x+2\frac{3x - 8}{(x^2 + x + 2)(x^2 - x + 2)} = \frac{A x + B}{x^2 + x + 2} + \frac{C x + D}{x^2 - x + 2}

Now, we multiply both sides of this equation by the denominator (x2+x+2)(x2βˆ’x+2)(x^2 + x + 2)(x^2 - x + 2) to eliminate the fractions:

3xβˆ’8=(Ax+B)(x2βˆ’x+2)+(Cx+D)(x2+x+2)3x - 8 = (A x + B)(x^2 - x + 2) + (C x + D)(x^2 + x + 2)

Expanding both sides:

3xβˆ’8=A(x3βˆ’x2+2x)+B(x2βˆ’x+2)+C(x3+x2+2x)+D(x2+x+2)3x - 8 = A(x^3 - x^2 + 2x) + B(x^2 - x + 2) + C(x^3 + x^2 + 2x) + D(x^2 + x + 2)

Simplifying further:

3xβˆ’8=(A+C)x3+(A+Bβˆ’C+D)x2+(2A+B+2Cβˆ’D)x+(2B+2D)3x - 8 = (A + C) x^3 + (A + B - C + D) x^2 + (2A + B + 2C - D) x + (2B + 2D)

Next, we equate the coefficients of like powers of xx on both sides:

  • For x3x^3: A+C=0A + C = 0
  • For x2x^2: A+Bβˆ’C+D=0A + B - C + D = 0
  • For x1x^1: 2A+B+2Cβˆ’D=32A + B + 2C - D = 3
  • For the constant term: 2B+2D=βˆ’82B + 2D = -8

Now, we solve this system of equations:

  1. From A+C=0A + C = 0, we get C=βˆ’AC = -A.
  2. Substituting C=βˆ’AC = -A into the equation A+Bβˆ’C+D=0A + B - C + D = 0 gives:
A+B+A+D=0β‡’2A+B+D=0 A + B + A + D = 0 \quad \Rightarrow \quad 2A + B + D = 0
  1. Substituting C=βˆ’AC = -A into 2A+B+2Cβˆ’D=32A + B + 2C - D = 3 gives:
2A+Bβˆ’2Aβˆ’D=3β‡’Bβˆ’D=3 2A + B - 2A - D = 3 \quad \Rightarrow \quad B - D = 3
  1. Finally, from 2B+2D=βˆ’82B + 2D = -8, we get:
B+D=βˆ’4 B + D = -4

Now, solving the system:

  • From B+D=βˆ’4B + D = -4 and Bβˆ’D=3B - D = 3, adding these two equations gives:
2B=βˆ’1β‡’B=βˆ’12 2B = -1 \quad \Rightarrow \quad B = -\frac{1}{2}
  • Substituting B=βˆ’12B = -\frac{1}{2} into B+D=βˆ’4B + D = -4:
βˆ’12+D=βˆ’4β‡’D=βˆ’72 -\frac{1}{2} + D = -4 \quad \Rightarrow \quad D = -\frac{7}{2}
  • Now, substituting B=βˆ’12B = -\frac{1}{2} and D=βˆ’72D = -\frac{7}{2} into 2A+B+D=02A + B + D = 0:
2Aβˆ’12βˆ’72=0β‡’2Aβˆ’4=0β‡’A=2 2A - \frac{1}{2} - \frac{7}{2} = 0 \quad \Rightarrow \quad 2A - 4 = 0 \quad \Rightarrow \quad A = 2
  • Since C=βˆ’AC = -A, we find C=βˆ’2C = -2.

Thus, the decomposition becomes:

3xβˆ’8(x2+x+2)(x2βˆ’x+2)=2xβˆ’12x2+x+2+βˆ’2xβˆ’72x2βˆ’x+2\frac{3x - 8}{(x^2 + x + 2)(x^2 - x + 2)} = \frac{2x - \frac{1}{2}}{x^2 + x + 2} + \frac{-2x - \frac{7}{2}}{x^2 - x + 2}

Now, we can integrate term by term:

∫3xβˆ’8(x2+x+2)(x2βˆ’x+2)dx=∫2xβˆ’12x2+x+2dx+βˆ«βˆ’2xβˆ’72x2βˆ’x+2dx\int \frac{3x - 8}{(x^2 + x + 2)(x^2 - x + 2)} dx = \int \frac{2x - \frac{1}{2}}{x^2 + x + 2} dx + \int \frac{-2x - \frac{7}{2}}{x^2 - x + 2} dx

These integrals can be solved using the standard formula for integrals of the form:

∫dxx2+ax+b=1bβˆ’a24tanβ‘βˆ’1(2x+abβˆ’a24)\int \frac{dx}{x^2 + ax + b} = \frac{1}{\sqrt{b - \frac{a^2}{4}}} \tan^{-1}\left(\frac{2x + a}{\sqrt{b - \frac{a^2}{4}}}\right)

After applying this formula, we get:

ln⁑∣x2βˆ’x+2x2+x+2∣+17[tanβ‘βˆ’1(2xβˆ’17)+5tanβ‘βˆ’1(2x+17)]+C\ln \left| \frac{x^2 - x + 2}{x^2 + x + 2} \right| + \frac{1}{\sqrt{7}} \left[ \tan^{-1}\left( \frac{2x - 1}{\sqrt{7}} \right) + 5 \tan^{-1}\left( \frac{2x + 1}{\sqrt{7}} \right) \right] + C

Key Formulas or Methods Used

  1. Partial Fraction Decomposition: This method allows us to express a rational function as a sum of simpler fractions, making it easier to integrate.
  2. Integration of Rational Functions: Once the function is decomposed, standard methods of integrating rational functions are applied.
  3. Arctangent Formula: Used for integrating terms of the form dxx2+a2\frac{dx}{x^2 + a^2}.

Summary of Steps

  1. Assume a partial fraction decomposition for the integrand.
  2. Multiply both sides by the denominator to clear fractions.
  3. Expand the resulting expression and equate coefficients of powers of xx.
  4. Solve the system of equations for the unknowns AA, BB, CC, and DD.
  5. Substitute the values of AA, BB, CC, and DD into the decomposed form.
  6. Integrate each term using standard integration formulas.
  7. Simplify and combine the results to obtain the final answer.