Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-31

Question Statement

Evaluate the integral:

3x3+4x2+9x+5(x2+x+1)(x2+2x+3),dx\int \frac{3 x^{3}+4 x^{2}+9 x+5}{\left(x^{2}+x+1\right)\left(x^{2}+2x+3\right)} , dx

Background and Explanation

To solve this integral, we need to break the rational function into simpler fractions using partial fraction decomposition. This technique involves expressing the given rational function as a sum of simpler fractions that are easier to integrate.

We also use integration by substitution for certain terms once the decomposition is done.


Solution

We start by setting up the partial fraction decomposition:

3x3+4x2+9x+5(x2+x+1)(x2+2x+3)=Ax+Bx2+x+1+Cx+Dx2+2x+3\frac{3x^3 + 4x^2 + 9x + 5}{(x^2 + x + 1)(x^2 + 2x + 3)} = \frac{Ax + B}{x^2 + x + 1} + \frac{Cx + D}{x^2 + 2x + 3}

Step 1: Multiply both sides by the denominator (x2+x+1)(x2+2x+3)(x^2 + x + 1)(x^2 + 2x + 3)

This gives us:

3x3+4x2+9x+5=(Ax+B)(x2+2x+3)+(Cx+D)(x2+x+1)3x^3 + 4x^2 + 9x + 5 = (Ax + B)(x^2 + 2x + 3) + (Cx + D)(x^2 + x + 1)

Expanding both sides:

  • The first part:
(Ax+B)(x2+2x+3)=A(x3+2x2+3x)+B(x2+2x+3)(Ax + B)(x^2 + 2x + 3) = A(x^3 + 2x^2 + 3x) + B(x^2 + 2x + 3)
  • The second part:
(Cx+D)(x2+x+1)=C(x3+x2+x)+D(x2+x+1)(Cx + D)(x^2 + x + 1) = C(x^3 + x^2 + x) + D(x^2 + x + 1)

Thus, combining both sides:

3x3+4x2+9x+5=(A+C)x3+(2A+B+C+D)x2+(3A+2B+C+D)x+(3B+D)3x^3 + 4x^2 + 9x + 5 = (A + C)x^3 + (2A + B + C + D)x^2 + (3A + 2B + C + D)x + (3B + D)

Step 2: Equate coefficients of like powers of xx

From comparing the powers of xx on both sides, we get the following system of equations:

  • For x3x^3:
    A+C=3(Equation a)A + C = 3 \quad \text{(Equation a)}

  • For x2x^2:
    2A+B+C+D=4(Equation b)2A + B + C + D = 4 \quad \text{(Equation b)}

  • For xx:
    3A+2B+C+D=9(Equation c)3A + 2B + C + D = 9 \quad \text{(Equation c)}

  • For constant terms:
    3B+D=5(Equation d)3B + D = 5 \quad \text{(Equation d)}

Step 3: Solve the system of equations

Substituting C=3AC = 3 - A into the equations:

  • From Equation b: 2A+B+(3A)+D=4A+B+D=12A + B + (3 - A) + D = 4 \quad \Rightarrow \quad A + B + D = 1

  • From Equation c: 3A+2B+(3A)+D=92A+2B+D=63A + 2B + (3 - A) + D = 9 \quad \Rightarrow \quad 2A + 2B + D = 6

Multiply Equation e by 2 and subtract from Equation f:

2A+2B+D=62A+2B+2D=22A + 2B + D = 6 2A + 2B + 2D = 2

Subtracting:

D=4D=4-D = 4 \quad \Rightarrow \quad D = -4

Now substitute D=4D = -4 into Equation d:

3B+(4)=53B=9B=33B + (-4) = 5 \quad \Rightarrow \quad 3B = 9 \quad \Rightarrow \quad B = 3

Substituting B=3B = 3 and D=4D = -4 into Equation e:

A+34=1A=2A + 3 - 4 = 1 \quad \Rightarrow \quad A = 2

Finally, substituting A=2A = 2 into Equation a:

A+C=32+C=3C=1A + C = 3 \quad \Rightarrow \quad 2 + C = 3 \quad \Rightarrow \quad C = 1

Step 4: Rewriting the integral with the values of AA, BB, CC, and DD

We can now express the original integral as:

3x3+4x2+9x+5(x2+x+1)(x2+2x+3),dx=2x+3x2+x+1,dx+x4x2+2x+3,dx\int \frac{3x^3 + 4x^2 + 9x + 5}{(x^2 + x + 1)(x^2 + 2x + 3)} , dx = \int \frac{2x + 3}{x^2 + x + 1} , dx + \int \frac{x - 4}{x^2 + 2x + 3} , dx

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Breaking down a rational function into simpler fractions for easier integration.
  • Substitution: Used to handle integrals of the form dxax2+bx+c\int \frac{dx}{ax^2 + bx + c} by completing the square.

Summary of Steps

  1. Set up the partial fraction decomposition.
  2. Multiply both sides by the denominator and expand.
  3. Equate the coefficients of like powers of xx.
  4. Solve the resulting system of equations for the constants AA, BB, CC, and DD.
  5. Substitute the values of AA, BB, CC, and DD back into the original integral.
  6. Integrate the resulting simpler fractions.