Question Statement
Evaluate the integral:
β«(xβa)(xβb)(aβb)xβ,dx,a>b
Background and Explanation
This is a rational function where the numerator and denominator are both linear functions of x. The integral requires partial fraction decomposition to split the fraction into simpler terms that can be integrated individually. A basic understanding of partial fractions and logarithmic integration is necessary.
Solution
Step 1: Partial Fraction Decomposition
We start with:
(xβa)(xβb)(aβb)xβ=xβaAβ+xβbBβ
Multiplying through by (xβa)(xβb) eliminates the denominators:
(aβb)x=A(xβb)+B(xβa)
Step 2: Solve for Coefficients
Expand and group terms:
(aβb)x=A(x)βAb+B(x)βBa
(aβb)x=(A+B)xβ(Ab+Ba)
Equating coefficients:
- Coefficient of x: A+B=aβb
- Constant term: βAbβBa=0
Find A:
Substitute x=b into the equation:
(aβb)b=B(bβa)
B=βb
Find B:
Substitute x=a into the equation:
(aβb)a=A(aβb)
A=a
Step 3: Rewrite the Integral
Substituting A=a and B=βb, the integral becomes:
β«(xβa)(xβb)(aβb)xβ,dx=β«xβaaβ,dx+β«xβbβbβ,dx
Step 4: Integrate
- For the first term:
β«xβaaβ,dx=alnβ£xβaβ£
- For the second term:
β«xβbβbβ,dx=βblnβ£xβbβ£
Combining the results:
β«(xβa)(xβb)(aβb)xβ,dx=alnβ£xβaβ£βblnβ£xβbβ£+C
-
Partial Fraction Decomposition:
Q(x)P(x)β=factor1Aβ+factor2Bβ
-
Logarithmic Integration:
β«x+c1β,dx=lnβ£x+cβ£
Summary of Steps
- Set up partial fraction decomposition:
(xβa)(xβb)(aβb)xβ=xβaAβ+xβbBβ
- Solve for A and B:
- A=a
- B=βb
- Rewrite the integral:
β«(xβa)(xβb)(aβb)xβ,dx=β«xβaaβ,dx+β«xβbβbβ,dx
- Integrate:
alnβ£xβaβ£βblnβ£xβbβ£+C
- Final answer:
alnβ£xβaβ£βblnβ£xβbβ£+Cβ