Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-4

Question Statement

Evaluate the integral:
∫(aβˆ’b)x(xβˆ’a)(xβˆ’b),dx,a>b\int \frac{(a-b)x}{(x-a)(x-b)} , dx, \quad a > b


Background and Explanation

This is a rational function where the numerator and denominator are both linear functions of xx. The integral requires partial fraction decomposition to split the fraction into simpler terms that can be integrated individually. A basic understanding of partial fractions and logarithmic integration is necessary.


Solution

Step 1: Partial Fraction Decomposition

We start with: (aβˆ’b)x(xβˆ’a)(xβˆ’b)=Axβˆ’a+Bxβˆ’b\frac{(a-b)x}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}

Multiplying through by (xβˆ’a)(xβˆ’b)(x-a)(x-b) eliminates the denominators: (aβˆ’b)x=A(xβˆ’b)+B(xβˆ’a)(a-b)x = A(x-b) + B(x-a)

Step 2: Solve for Coefficients

Expand and group terms: (aβˆ’b)x=A(x)βˆ’Ab+B(x)βˆ’Ba(a-b)x = A(x) - Ab + B(x) - Ba (aβˆ’b)x=(A+B)xβˆ’(Ab+Ba)(a-b)x = (A + B)x - (Ab + Ba)

Equating coefficients:

  1. Coefficient of xx: A+B=aβˆ’bA + B = a - b
  2. Constant term: βˆ’Abβˆ’Ba=0-Ab - Ba = 0

Find AA:

Substitute x=bx = b into the equation: (aβˆ’b)b=B(bβˆ’a)(a-b)b = B(b-a) B=βˆ’bB = -b

Find BB:

Substitute x=ax = a into the equation: (aβˆ’b)a=A(aβˆ’b)(a-b)a = A(a-b) A=aA = a

Step 3: Rewrite the Integral

Substituting A=aA = a and B=βˆ’bB = -b, the integral becomes: ∫(aβˆ’b)x(xβˆ’a)(xβˆ’b),dx=∫axβˆ’a,dx+βˆ«βˆ’bxβˆ’b,dx\int \frac{(a-b)x}{(x-a)(x-b)} , dx = \int \frac{a}{x-a} , dx + \int \frac{-b}{x-b} , dx

Step 4: Integrate

  1. For the first term:
    ∫axβˆ’a,dx=aln⁑∣xβˆ’a∣\int \frac{a}{x-a} , dx = a \ln|x-a|
  2. For the second term:
    βˆ«βˆ’bxβˆ’b,dx=βˆ’bln⁑∣xβˆ’b∣\int \frac{-b}{x-b} , dx = -b \ln|x-b|

Combining the results: ∫(aβˆ’b)x(xβˆ’a)(xβˆ’b),dx=aln⁑∣xβˆ’aβˆ£βˆ’bln⁑∣xβˆ’b∣+C\int \frac{(a-b)x}{(x-a)(x-b)} , dx = a \ln|x-a| - b \ln|x-b| + C


Key Formulas or Methods Used

  1. Partial Fraction Decomposition:
    P(x)Q(x)=Afactor1+Bfactor2\frac{P(x)}{Q(x)} = \frac{A}{\text{factor1}} + \frac{B}{\text{factor2}}

  2. Logarithmic Integration:
    ∫1x+c,dx=ln⁑∣x+c∣\int \frac{1}{x+c} , dx = \ln|x+c|


Summary of Steps

  1. Set up partial fraction decomposition:
    (aβˆ’b)x(xβˆ’a)(xβˆ’b)=Axβˆ’a+Bxβˆ’b\frac{(a-b)x}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}
  2. Solve for AA and BB:
    • A=aA = a
    • B=βˆ’bB = -b
  3. Rewrite the integral: ∫(aβˆ’b)x(xβˆ’a)(xβˆ’b),dx=∫axβˆ’a,dx+βˆ«βˆ’bxβˆ’b,dx\int \frac{(a-b)x}{(x-a)(x-b)} , dx = \int \frac{a}{x-a} , dx + \int \frac{-b}{x-b} , dx
  4. Integrate: aln⁑∣xβˆ’aβˆ£βˆ’bln⁑∣xβˆ’b∣+Ca \ln|x-a| - b \ln|x-b| + C
  5. Final answer: aln⁑∣xβˆ’aβˆ£βˆ’bln⁑∣xβˆ’b∣+C\boxed{a \ln|x-a| - b \ln|x-b| + C}