Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-5

Question Statement

Evaluate the integral:
∫3βˆ’x1βˆ’xβˆ’6x2,dx\int \frac{3 - x}{1 - x - 6x^2} , dx


Background and Explanation

The given problem involves a rational function where the numerator is linear, and the denominator is a quadratic polynomial that factors into two linear terms. The solution involves partial fraction decomposition to simplify the integral into manageable components, followed by the application of logarithmic integration.


Solution

Step 1: Factorize the Denominator

The denominator 1βˆ’xβˆ’6x21 - x - 6x^2 can be factored as: (1βˆ’xβˆ’6x2)=(1+2x)(1βˆ’3x)(1 - x - 6x^2) = (1 + 2x)(1 - 3x)

Rewriting the integral: ∫3βˆ’x1βˆ’xβˆ’6x2,dx=∫3βˆ’x(1+2x)(1βˆ’3x),dx\int \frac{3 - x}{1 - x - 6x^2} , dx = \int \frac{3 - x}{(1 + 2x)(1 - 3x)} , dx

Step 2: Partial Fraction Decomposition

Express 3βˆ’x(1+2x)(1βˆ’3x)\frac{3 - x}{(1 + 2x)(1 - 3x)} as: 3βˆ’x(1+2x)(1βˆ’3x)=A1+2x+B1βˆ’3x\frac{3 - x}{(1 + 2x)(1 - 3x)} = \frac{A}{1 + 2x} + \frac{B}{1 - 3x}

Multiply through by (1+2x)(1βˆ’3x)(1 + 2x)(1 - 3x): 3βˆ’x=A(1βˆ’3x)+B(1+2x)3 - x = A(1 - 3x) + B(1 + 2x)

Expand and group terms: 3βˆ’x=Aβˆ’3Ax+B+2Bx3 - x = A - 3Ax + B + 2Bx 3βˆ’x=(A+B)+(βˆ’3A+2B)x3 - x = (A + B) + (-3A + 2B)x

Equating coefficients of like terms:

  1. Constant term: A+B=3A + B = 3
  2. Coefficient of xx: βˆ’3A+2B=βˆ’1-3A + 2B = -1

Step 3: Solve for AA and BB

  1. From A+B=3A + B = 3:
    B=3βˆ’AB = 3 - A

  2. Substitute into βˆ’3A+2B=βˆ’1-3A + 2B = -1:
    βˆ’3A+2(3βˆ’A)=βˆ’1-3A + 2(3 - A) = -1 βˆ’3A+6βˆ’2A=βˆ’1-3A + 6 - 2A = -1 βˆ’5A=βˆ’7β‡’A=75-5A = -7 \quad \Rightarrow \quad A = \frac{7}{5}

  3. Using B=3βˆ’AB = 3 - A:
    B=3βˆ’75=155βˆ’75=85B = 3 - \frac{7}{5} = \frac{15}{5} - \frac{7}{5} = \frac{8}{5}

Step 4: Rewrite the Integral

Substitute A=75A = \frac{7}{5} and B=85B = \frac{8}{5}: 3βˆ’x(1+2x)(1βˆ’3x)=751+2x+851βˆ’3x\frac{3 - x}{(1 + 2x)(1 - 3x)} = \frac{\frac{7}{5}}{1 + 2x} + \frac{\frac{8}{5}}{1 - 3x}

Thus: ∫3βˆ’x1βˆ’xβˆ’6x2,dx=∫751+2x,dx+∫851βˆ’3x,dx\int \frac{3 - x}{1 - x - 6x^2} , dx = \int \frac{\frac{7}{5}}{1 + 2x} , dx + \int \frac{\frac{8}{5}}{1 - 3x} , dx

Step 5: Integrate Each Term

  1. For the first term: ∫751+2x,dx=75∫11+2x,dx\int \frac{\frac{7}{5}}{1 + 2x} , dx = \frac{7}{5} \int \frac{1}{1 + 2x} , dx Using the substitution u=1+2xβ‡’du=2,dxu = 1 + 2x \Rightarrow du = 2 , dx: ∫11+2x,dx=12ln⁑∣1+2x∣\int \frac{1}{1 + 2x} , dx = \frac{1}{2} \ln|1 + 2x| Thus: ∫751+2x,dx=710ln⁑∣1+2x∣\int \frac{\frac{7}{5}}{1 + 2x} , dx = \frac{7}{10} \ln|1 + 2x|

  2. For the second term: ∫851βˆ’3x,dx=85∫11βˆ’3x,dx\int \frac{\frac{8}{5}}{1 - 3x} , dx = \frac{8}{5} \int \frac{1}{1 - 3x} , dx Using the substitution v=1βˆ’3xβ‡’dv=βˆ’3,dxv = 1 - 3x \Rightarrow dv = -3 , dx: ∫11βˆ’3x,dx=βˆ’13ln⁑∣1βˆ’3x∣\int \frac{1}{1 - 3x} , dx = -\frac{1}{3} \ln|1 - 3x| Thus: ∫851βˆ’3x,dx=βˆ’815ln⁑∣1βˆ’3x∣\int \frac{\frac{8}{5}}{1 - 3x} , dx = -\frac{8}{15} \ln|1 - 3x|

Step 6: Combine Results

Adding the two parts: ∫3βˆ’x1βˆ’xβˆ’6x2,dx=710ln⁑∣1+2xβˆ£βˆ’815ln⁑∣1βˆ’3x∣+C\int \frac{3 - x}{1 - x - 6x^2} , dx = \frac{7}{10} \ln|1 + 2x| - \frac{8}{15} \ln|1 - 3x| + C


Key Formulas or Methods Used

  1. Partial Fraction Decomposition:
    P(x)Q(x)=Afactor1+Bfactor2\frac{P(x)}{Q(x)} = \frac{A}{\text{factor1}} + \frac{B}{\text{factor2}}

  2. Logarithmic Integration:
    ∫1ax+b,dx=1aln⁑∣ax+b∣\int \frac{1}{ax + b} , dx = \frac{1}{a} \ln|ax + b|

  3. Substitution Method for Simplifying Integrals.


Summary of Steps

  1. Factorize the denominator:
    1βˆ’xβˆ’6x2=(1+2x)(1βˆ’3x)1 - x - 6x^2 = (1 + 2x)(1 - 3x)
  2. Apply partial fraction decomposition:
    3βˆ’x1βˆ’xβˆ’6x2=A1+2x+B1βˆ’3x\frac{3 - x}{1 - x - 6x^2} = \frac{A}{1 + 2x} + \frac{B}{1 - 3x}
  3. Solve for AA and BB:
    A=75,B=85A = \frac{7}{5}, \quad B = \frac{8}{5}
  4. Rewrite the integral:
    ∫3βˆ’x1βˆ’xβˆ’6x2,dx=∫751+2x,dx+∫851βˆ’3x,dx\int \frac{3 - x}{1 - x - 6x^2} , dx = \int \frac{\frac{7}{5}}{1 + 2x} , dx + \int \frac{\frac{8}{5}}{1 - 3x} , dx
  5. Integrate each term using logarithmic integration.
  6. Final result:
    710ln⁑∣1+2xβˆ£βˆ’815ln⁑∣1βˆ’3x∣+C\boxed{\frac{7}{10} \ln|1 + 2x| - \frac{8}{15} \ln|1 - 3x| + C}