Question Statement
Evaluate the integral:
β«1βxβ6x23βxβ,dx
Background and Explanation
The given problem involves a rational function where the numerator is linear, and the denominator is a quadratic polynomial that factors into two linear terms. The solution involves partial fraction decomposition to simplify the integral into manageable components, followed by the application of logarithmic integration.
Solution
Step 1: Factorize the Denominator
The denominator 1βxβ6x2 can be factored as:
(1βxβ6x2)=(1+2x)(1β3x)
Rewriting the integral:
β«1βxβ6x23βxβ,dx=β«(1+2x)(1β3x)3βxβ,dx
Step 2: Partial Fraction Decomposition
Express (1+2x)(1β3x)3βxβ as:
(1+2x)(1β3x)3βxβ=1+2xAβ+1β3xBβ
Multiply through by (1+2x)(1β3x):
3βx=A(1β3x)+B(1+2x)
Expand and group terms:
3βx=Aβ3Ax+B+2Bx
3βx=(A+B)+(β3A+2B)x
Equating coefficients of like terms:
- Constant term: A+B=3
- Coefficient of x: β3A+2B=β1
Step 3: Solve for A and B
-
From A+B=3:
B=3βA
-
Substitute into β3A+2B=β1:
β3A+2(3βA)=β1
β3A+6β2A=β1
β5A=β7βA=57β
-
Using B=3βA:
B=3β57β=515ββ57β=58β
Step 4: Rewrite the Integral
Substitute A=57β and B=58β:
(1+2x)(1β3x)3βxβ=1+2x57ββ+1β3x58ββ
Thus:
β«1βxβ6x23βxβ,dx=β«1+2x57ββ,dx+β«1β3x58ββ,dx
Step 5: Integrate Each Term
-
For the first term:
β«1+2x57ββ,dx=57ββ«1+2x1β,dx
Using the substitution u=1+2xβdu=2,dx:
β«1+2x1β,dx=21βlnβ£1+2xβ£
Thus:
β«1+2x57ββ,dx=107βlnβ£1+2xβ£
-
For the second term:
β«1β3x58ββ,dx=58ββ«1β3x1β,dx
Using the substitution v=1β3xβdv=β3,dx:
β«1β3x1β,dx=β31βlnβ£1β3xβ£
Thus:
β«1β3x58ββ,dx=β158βlnβ£1β3xβ£
Step 6: Combine Results
Adding the two parts:
β«1βxβ6x23βxβ,dx=107βlnβ£1+2xβ£β158βlnβ£1β3xβ£+C
-
Partial Fraction Decomposition:
Q(x)P(x)β=factor1Aβ+factor2Bβ
-
Logarithmic Integration:
β«ax+b1β,dx=a1βlnβ£ax+bβ£
-
Substitution Method for Simplifying Integrals.
Summary of Steps
- Factorize the denominator:
1βxβ6x2=(1+2x)(1β3x)
- Apply partial fraction decomposition:
1βxβ6x23βxβ=1+2xAβ+1β3xBβ
- Solve for A and B:
A=57β,B=58β
- Rewrite the integral:
β«1βxβ6x23βxβ,dx=β«1+2x57ββ,dx+β«1β3x58ββ,dx
- Integrate each term using logarithmic integration.
- Final result:
107βlnβ£1+2xβ£β158βlnβ£1β3xβ£+Cβ