Question Statement
Evaluate the integral:
β«x2βa22xβ,dx
Background and Explanation
The given integral involves a rational function with a quadratic denominator that factors into two linear terms. The method of partial fraction decomposition is used to break down the fraction into simpler components. These components can then be integrated individually using logarithmic integration.
Solution
Step 1: Factorize the Denominator
The denominator x2βa2 is a difference of squares, which can be factored as:
(x2βa2)=(xβa)(x+a)
Thus, the integral becomes:
β«x2βa22xβ,dx=β«(xβa)(x+a)2xβ,dx
Step 2: Partial Fraction Decomposition
Express (xβa)(x+a)2xβ as:
(xβa)(x+a)2xβ=xβaAβ+x+aBβ
Multiply through by (xβa)(x+a) to clear the denominators:
2x=A(x+a)+B(xβa)
Expand and group terms:
2x=Ax+Aa+BxβBa
2x=(A+B)x+(AaβBa)
Equating coefficients of like terms:
- Coefficient of x: A+B=2
- Constant term: AaβBa=0βa(AβB)=0
Since aξ =0, it follows that:
AβB=0βA=B
Substitute A=B into A+B=2:
A+A=2βA=B=1
Step 3: Rewrite the Integral
Substituting A=1 and B=1:
(xβa)(x+a)2xβ=xβa1β+x+a1β
Thus, the integral becomes:
β«x2βa22xβ,dx=β«xβa1β,dx+β«x+a1β,dx
Step 4: Integrate Each Term
-
For the first term:
β«xβa1β,dx=lnβ£xβaβ£
-
For the second term:
β«x+a1β,dx=lnβ£x+aβ£
Adding these results:
β«x2βa22xβ,dx=lnβ£xβaβ£+lnβ£x+aβ£+C
-
Partial Fraction Decomposition:
(xβa)(x+a)2xβ=xβaAβ+x+aBβ
-
Logarithmic Integration:
β«xβa1β,dx=lnβ£xβaβ£,β«x+a1β,dx=lnβ£x+aβ£
-
Difference of Squares Factorization:
x2βa2=(xβa)(x+a)
Summary of Steps
- Factorize the denominator:
x2βa2=(xβa)(x+a)
- Apply partial fraction decomposition:
x2βa22xβ=xβa1β+x+a1β
- Rewrite the integral using the decomposed form.
- Integrate each term:
lnβ£xβaβ£andlnβ£x+aβ£
- Combine results and add the constant of integration.
Final Answer:
lnβ£xβaβ£+lnβ£x+aβ£+Cβ