Question Statement
Evaluate the integral:
β«6x2+5xβ41β,dx
Background and Explanation
The given integral involves a rational function where the quadratic expression in the denominator cannot be factored directly into simple terms. To simplify the problem, we use partial fraction decomposition, which breaks the fraction into a sum of simpler terms that can be integrated individually. This technique is especially useful when the denominator factors into linear terms.
Solution
Step 1: Factorize the Denominator
The denominator 6x2+5xβ4 can be factored by grouping:
6x2+5xβ4=6x2+8xβ3xβ4
Group and factorize:
(6x2+8x)β(3x+4)=2x(3x+4)β(3x+4)
Factor out (3x+4):
(6x2+5xβ4)=(3x+4)(2xβ1)
Thus, the integral becomes:
β«6x2+5xβ41β,dx=β«(3x+4)(2xβ1)1β,dx
Step 2: Partial Fraction Decomposition
Write the fraction as:
(3x+4)(2xβ1)1β=3x+4Aβ+2xβ1Bβ
Multiply through by (3x+4)(2xβ1) to eliminate the denominators:
1=A(2xβ1)+B(3x+4)
Step 3: Solve for A and B
Expand and group terms:
1=A(2x)βA+B(3x)+B(4)
1=(2A+3B)x+(βA+4B)
Equating coefficients of like terms:
- Coefficient of x: 2A+3B=0
- Constant term: βA+4B=1
Solve the system of equations:
-
From 2A+3B=0:
A=β23Bβ
-
Substitute A=β23Bβ into βA+4B=1:
β(β23Bβ)+4B=1
23Bβ+4B=1
211Bβ=1βB=112β
-
Substitute B=112β into A=β23Bβ:
A=β23ββ
112β=β113β
Step 4: Rewrite the Integral
Substituting A=β113β and B=112β:
(3x+4)(2xβ1)1β=3x+4β113ββ+2xβ1112ββ
The integral becomes:
β«6x2+5xβ41β,dx=β«3x+4β113ββ,dx+β«2xβ1112ββ,dx
Step 5: Integrate Each Term
-
For the first term:
β«3x+4β113ββ,dx=β113ββ
31βlnβ£3x+4β£=β111βlnβ£3x+4β£
-
For the second term:
β«2xβ1112ββ,dx=112ββ
21βlnβ£2xβ1β£=111βlnβ£2xβ1β£
Adding the results:
β«6x2+5xβ41β,dx=β111βlnβ£3x+4β£+111βlnβ£2xβ1β£+C
- Partial Fraction Decomposition:
(3x+4)(2xβ1)1β=3x+4Aβ+2xβ1Bβ
- Logarithmic Integration:
β«ax+b1β,dx=a1βlnβ£ax+bβ£+C
- Factoring Quadratics:
6x2+5xβ4=(3x+4)(2xβ1)
Summary of Steps
- Factorize the denominator:
6x2+5xβ4=(3x+4)(2xβ1)
- Apply partial fraction decomposition to rewrite the integrand.
- Solve for constants A and B using substitution.
- Rewrite the integral as a sum of simpler fractions.
- Integrate each term using logarithmic integration rules.
Final Answer:
β111βlnβ£3x+4β£+111βlnβ£2xβ1β£+Cβ