Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.5 Q-7

Question Statement

Evaluate the integral:
∫16x2+5xβˆ’4,dx\int \frac{1}{6x^2 + 5x - 4} , dx


Background and Explanation

The given integral involves a rational function where the quadratic expression in the denominator cannot be factored directly into simple terms. To simplify the problem, we use partial fraction decomposition, which breaks the fraction into a sum of simpler terms that can be integrated individually. This technique is especially useful when the denominator factors into linear terms.


Solution

Step 1: Factorize the Denominator

The denominator 6x2+5xβˆ’46x^2 + 5x - 4 can be factored by grouping: 6x2+5xβˆ’4=6x2+8xβˆ’3xβˆ’46x^2 + 5x - 4 = 6x^2 + 8x - 3x - 4
Group and factorize: (6x2+8x)βˆ’(3x+4)=2x(3x+4)βˆ’(3x+4)(6x^2 + 8x) - (3x + 4) = 2x(3x + 4) - (3x + 4)
Factor out (3x+4)(3x + 4): (6x2+5xβˆ’4)=(3x+4)(2xβˆ’1)(6x^2 + 5x - 4) = (3x + 4)(2x - 1)

Thus, the integral becomes: ∫16x2+5xβˆ’4,dx=∫1(3x+4)(2xβˆ’1),dx\int \frac{1}{6x^2 + 5x - 4} , dx = \int \frac{1}{(3x + 4)(2x - 1)} , dx

Step 2: Partial Fraction Decomposition

Write the fraction as: 1(3x+4)(2xβˆ’1)=A3x+4+B2xβˆ’1\frac{1}{(3x + 4)(2x - 1)} = \frac{A}{3x + 4} + \frac{B}{2x - 1}

Multiply through by (3x+4)(2xβˆ’1)(3x + 4)(2x - 1) to eliminate the denominators: 1=A(2xβˆ’1)+B(3x+4)1 = A(2x - 1) + B(3x + 4)

Step 3: Solve for A and B

Expand and group terms: 1=A(2x)βˆ’A+B(3x)+B(4)1 = A(2x) - A + B(3x) + B(4)
1=(2A+3B)x+(βˆ’A+4B)1 = (2A + 3B)x + (-A + 4B)

Equating coefficients of like terms:

  1. Coefficient of xx: 2A+3B=02A + 3B = 0
  2. Constant term: βˆ’A+4B=1-A + 4B = 1

Solve the system of equations:

  • From 2A+3B=02A + 3B = 0:
    A=βˆ’3B2A = -\frac{3B}{2}

  • Substitute A=βˆ’3B2A = -\frac{3B}{2} into βˆ’A+4B=1-A + 4B = 1:
    βˆ’(βˆ’3B2)+4B=1-\left(-\frac{3B}{2}\right) + 4B = 1
    3B2+4B=1\frac{3B}{2} + 4B = 1
    11B2=1β‡’B=211\frac{11B}{2} = 1 \quad \Rightarrow \quad B = \frac{2}{11}

  • Substitute B=211B = \frac{2}{11} into A=βˆ’3B2A = -\frac{3B}{2}:
    A=βˆ’32β‹…211=βˆ’311A = -\frac{3}{2} \cdot \frac{2}{11} = -\frac{3}{11}

Step 4: Rewrite the Integral

Substituting A=βˆ’311A = -\frac{3}{11} and B=211B = \frac{2}{11}: 1(3x+4)(2xβˆ’1)=βˆ’3113x+4+2112xβˆ’1\frac{1}{(3x + 4)(2x - 1)} = \frac{-\frac{3}{11}}{3x + 4} + \frac{\frac{2}{11}}{2x - 1}

The integral becomes: ∫16x2+5xβˆ’4,dx=βˆ«βˆ’3113x+4,dx+∫2112xβˆ’1,dx\int \frac{1}{6x^2 + 5x - 4} , dx = \int \frac{-\frac{3}{11}}{3x + 4} , dx + \int \frac{\frac{2}{11}}{2x - 1} , dx

Step 5: Integrate Each Term

  1. For the first term: βˆ«βˆ’3113x+4,dx=βˆ’311β‹…13ln⁑∣3x+4∣=βˆ’111ln⁑∣3x+4∣\int \frac{-\frac{3}{11}}{3x + 4} , dx = -\frac{3}{11} \cdot \frac{1}{3} \ln|3x + 4| = -\frac{1}{11} \ln|3x + 4|

  2. For the second term: ∫2112xβˆ’1,dx=211β‹…12ln⁑∣2xβˆ’1∣=111ln⁑∣2xβˆ’1∣\int \frac{\frac{2}{11}}{2x - 1} , dx = \frac{2}{11} \cdot \frac{1}{2} \ln|2x - 1| = \frac{1}{11} \ln|2x - 1|

Adding the results: ∫16x2+5xβˆ’4,dx=βˆ’111ln⁑∣3x+4∣+111ln⁑∣2xβˆ’1∣+C\int \frac{1}{6x^2 + 5x - 4} , dx = -\frac{1}{11} \ln|3x + 4| + \frac{1}{11} \ln|2x - 1| + C


Key Formulas or Methods Used

  1. Partial Fraction Decomposition:
    1(3x+4)(2xβˆ’1)=A3x+4+B2xβˆ’1\frac{1}{(3x + 4)(2x - 1)} = \frac{A}{3x + 4} + \frac{B}{2x - 1}
  2. Logarithmic Integration:
    ∫1ax+b,dx=1aln⁑∣ax+b∣+C\int \frac{1}{ax + b} , dx = \frac{1}{a} \ln|ax + b| + C
  3. Factoring Quadratics:
    6x2+5xβˆ’4=(3x+4)(2xβˆ’1)6x^2 + 5x - 4 = (3x + 4)(2x - 1)

Summary of Steps

  1. Factorize the denominator:
    6x2+5xβˆ’4=(3x+4)(2xβˆ’1)6x^2 + 5x - 4 = (3x + 4)(2x - 1)
  2. Apply partial fraction decomposition to rewrite the integrand.
  3. Solve for constants AA and BB using substitution.
  4. Rewrite the integral as a sum of simpler fractions.
  5. Integrate each term using logarithmic integration rules.

Final Answer:

βˆ’111ln⁑∣3x+4∣+111ln⁑∣2xβˆ’1∣+C\boxed{-\frac{1}{11} \ln|3x + 4| + \frac{1}{11} \ln|2x - 1| + C}