Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-10

Question Statement

Evaluate the integral: ∫03dxx2+9\int_{0}^{3} \frac{dx}{x^2 + 9}


Background and Explanation

To solve this integral, you need to recognize the standard form of an integral involving a sum of squares. Specifically, this is a form of the arctangent function integral. The general formula for integrals of this type is: ∫dxx2+a2=1atanβ‘βˆ’1(xa)+C\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C

Here, a=3a = 3, so we will use this formula to solve the problem. The limits of integration are from 0 to 3, which we will apply after integrating.


Solution

  1. Recognize the Integral Form:

    The integral can be written as: ∫03dxx2+9\int_{0}^{3} \frac{dx}{x^2 + 9}

    Notice that 9=329 = 3^2, so the integral has the form 1x2+a2\frac{1}{x^2 + a^2} where a=3a = 3.

  2. Apply the Formula for Standard Integrals:

    Using the formula for the integral of 1x2+a2\frac{1}{x^2 + a^2}: ∫dxx2+a2=1atanβ‘βˆ’1(xa)\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right)

    In this case, a=3a = 3, so the integral becomes: 13tanβ‘βˆ’1(x3)\frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right)

  3. Evaluate the Integral at the Limits:

    Now, apply the limits of integration from 0 to 3: ∫03dxx2+9=13[tanβ‘βˆ’1(33)βˆ’tanβ‘βˆ’1(03)]\int_{0}^{3} \frac{dx}{x^2 + 9} = \frac{1}{3} \left[ \tan^{-1} \left( \frac{3}{3} \right) - \tan^{-1} \left( \frac{0}{3} \right) \right]

  4. Simplify the Expression:

    We know that: tanβ‘βˆ’1(1)=Ο€4andtanβ‘βˆ’1(0)=0\tan^{-1} (1) = \frac{\pi}{4} \quad \text{and} \quad \tan^{-1} (0) = 0

    Substituting these values into the equation gives: 13[Ο€4βˆ’0]=13Γ—Ο€4=Ο€12\frac{1}{3} \left[ \frac{\pi}{4} - 0 \right] = \frac{1}{3} \times \frac{\pi}{4} = \frac{\pi}{12}

  5. Final Result:

    Therefore, the value of the integral is: Ο€12\boxed{\frac{\pi}{12}}


Key Formulas or Methods Used

  • Integral Formula for Arctangent:
    ∫dxx2+a2=1atanβ‘βˆ’1(xa)\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right)

Summary of Steps

  1. Recognize the standard form dxx2+9\frac{dx}{x^2 + 9}, where a=3a = 3.
  2. Apply the arctangent integral formula:
    13tanβ‘βˆ’1(x3)\frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right)
  3. Evaluate the integral from 0 to 3: 13[tanβ‘βˆ’1(1)βˆ’tanβ‘βˆ’1(0)]\frac{1}{3} \left[ \tan^{-1}(1) - \tan^{-1}(0) \right]
  4. Simplify and compute: 13Γ—Ο€4=Ο€12\frac{1}{3} \times \frac{\pi}{4} = \frac{\pi}{12}
  5. The final result is: Ο€12\boxed{\frac{\pi}{12}}