Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-12

Question Statement

Evaluate the integral: ∫12(x+1x)12(1βˆ’1x2),dx\int_{1}^{2}\left(x + \frac{1}{x}\right)^{\frac{1}{2}} \left(1 - \frac{1}{x^2}\right) , dx


Background and Explanation

This is an integral involving a rational expression with a square root and a term involving 1x2\frac{1}{x^2}. To simplify this integral, we’ll use substitution to convert it into a more manageable form. Specifically, we will let: y=x+1xy = x + \frac{1}{x}

This substitution will simplify the integrand and allow us to proceed with the integration.


Solution

  1. Substitute the Expression:

    Let: y=x+1xy = x + \frac{1}{x}

    Now, differentiate with respect to xx to find dydy: dy=(1βˆ’1x2)dxdy = \left( 1 - \frac{1}{x^2} \right) dx

  2. Adjust Limits of Integration:

    When x=1x = 1, we get: y=1+11=2y = 1 + \frac{1}{1} = 2

    When x=2x = 2, we get: y=2+12=52y = 2 + \frac{1}{2} = \frac{5}{2}

    Thus, the limits for yy change from x=1x = 1 to x=2x = 2, corresponding to y=2y = 2 to y=52y = \frac{5}{2}.

  3. Rewrite the Integral:

    Substitute into the original integral: ∫12(x+1x)12(1βˆ’1x2)dx\int_{1}^{2} \left(x + \frac{1}{x}\right)^{\frac{1}{2}} \left(1 - \frac{1}{x^2}\right) dx becomes: ∫252y12,dy\int_{2}^{\frac{5}{2}} y^{\frac{1}{2}} , dy

  4. Integrate:

    Now, integrate the function y12y^{\frac{1}{2}} with respect to yy. The formula for the integral of yny^n is: ∫yn,dy=yn+1n+1\int y^n , dy = \frac{y^{n+1}}{n+1}

    In this case, n=12n = \frac{1}{2}, so: ∫y12,dy=23y32\int y^{\frac{1}{2}} , dy = \frac{2}{3} y^{\frac{3}{2}}

  5. Evaluate the Integral:

    Now, substitute the limits 52\frac{5}{2} and 22 into the antiderivative: 23[y32]252\frac{2}{3} \left[ y^{\frac{3}{2}} \right]_{2}^{\frac{5}{2}}

    This becomes: 23[(52)32βˆ’232]\frac{2}{3} \left[ \left( \frac{5}{2} \right)^{\frac{3}{2}} - 2^{\frac{3}{2}} \right]

  6. Simplify the Result:

    Now simplify the expression: 23[532232βˆ’232]\frac{2}{3} \left[ \frac{5^{\frac{3}{2}}}{2^{\frac{3}{2}}} - 2^{\frac{3}{2}} \right]

    Factor out 232\frac{2}{3 \sqrt{2}} to make the expression easier to handle: 232[55βˆ’8]\frac{2}{3 \sqrt{2}} \left[ 5 \sqrt{5} - 8 \right]

    Thus, the value of the integral is: 232[55βˆ’8]\boxed{\frac{2}{3 \sqrt{2}} \left[ 5 \sqrt{5} - 8 \right]}


Key Formulas or Methods Used

  • Substitution: y=x+1xy = x + \frac{1}{x} dy=(1βˆ’1x2)dxdy = \left( 1 - \frac{1}{x^2} \right) dx

  • Integral of a Power: ∫yn,dy=yn+1n+1\int y^n , dy = \frac{y^{n+1}}{n+1}


Summary of Steps

  1. Let y=x+1xy = x + \frac{1}{x}, and differentiate to get dy=(1βˆ’1x2)dxdy = \left(1 - \frac{1}{x^2}\right) dx.

  2. Change the limits of integration: when x=1x = 1, y=2y = 2; and when x=2x = 2, y=52y = \frac{5}{2}.

  3. Substitute into the integral and simplify it to ∫252y12,dy\int_{2}^{\frac{5}{2}} y^{\frac{1}{2}} , dy.

  4. Integrate using the formula ∫yn,dy=yn+1n+1\int y^n , dy = \frac{y^{n+1}}{n+1} to get 23y32\frac{2}{3} y^{\frac{3}{2}}.

  5. Evaluate the result at the limits to get: 232[55βˆ’8]\frac{2}{3 \sqrt{2}} \left[ 5 \sqrt{5} - 8 \right]

  6. Final answer: 232[55βˆ’8]\boxed{\frac{2}{3 \sqrt{2}} \left[ 5 \sqrt{5} - 8 \right]}