Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-15

Question Statement

Evaluate the following integral: 0π4cosθ+sinθcos2θ,dθ\int_{0}^{\frac{\pi}{4}} \frac{\cos \theta + \sin \theta}{\cos 2\theta} , d\theta


Background and Explanation

This integral involves a combination of trigonometric functions, including cosθ\cos \theta, sinθ\sin \theta, and cos2θ\cos 2\theta. A key concept for solving this integral is simplifying the trigonometric terms and recognizing common integrals like those of secθ\sec \theta and secθtanθ\sec \theta \tan \theta, which are standard integrals.


Solution

  1. Simplify the Expression:

    Start by simplifying the integrand. We rewrite cos2θ\cos 2\theta in terms of cosθ\cos \theta and sinθ\sin \theta. From the double angle identity, we have: cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1

    So, the original integral becomes: 0π4cosθ+sinθ2cos2θ1,dθ\int_{0}^{\frac{\pi}{4}} \frac{\cos \theta + \sin \theta}{2\cos^2 \theta - 1} , d\theta

    We now split the numerator into two parts: cosθcos2θ+sinθcos2θ\frac{\cos \theta}{\cos 2\theta} + \frac{\sin \theta}{\cos 2\theta}

  2. Separate the Integral:

    Break the integral into two simpler integrals: 120π4cosθcos2θ,dθ+120π4sinθcosθ,dθ\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{\cos \theta}{\cos^2 \theta} , d\theta + \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\cos \theta} , d\theta

  3. Simplify the Terms:

    • The first term simplifies to: 120π4secθ,dθ\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec \theta , d\theta

    • The second term simplifies to: 120π4secθtanθ,dθ\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec \theta \tan \theta , d\theta

  4. Integrate the Terms:

    • The integral of secθ\sec \theta is: secθ,dθ=lnsecθ+tanθ\int \sec \theta , d\theta = \ln |\sec \theta + \tan \theta|

    • The integral of secθtanθ\sec \theta \tan \theta is: secθtanθ,dθ=secθ\int \sec \theta \tan \theta , d\theta = \sec \theta

  5. Apply the Limits:

    Now, apply the limits of integration from 0 to π4\frac{\pi}{4}:

    • For the first term: 12[lnsecθ+tanθ]0π4\frac{1}{2} \left[\ln |\sec \theta + \tan \theta|\right]_{0}^{\frac{\pi}{4}}

      Evaluate at the limits: secπ4=2,tanπ4=1\sec \frac{\pi}{4} = \sqrt{2}, \quad \tan \frac{\pi}{4} = 1 sec0=1,tan0=0\sec 0 = 1, \quad \tan 0 = 0

      So: 12[ln(2+1)ln(1+0)]=12ln(2+1)\frac{1}{2} \left[\ln (\sqrt{2} + 1) - \ln (1 + 0)\right] = \frac{1}{2} \ln (\sqrt{2} + 1)

    • For the second term: 12[secθ]0π4\frac{1}{2} \left[\sec \theta\right]_{0}^{\frac{\pi}{4}}

      This evaluates to: 12[21]\frac{1}{2} \left[\sqrt{2} - 1\right]

  6. Combine the Results:

    The final result is the sum of both terms: 12ln(2+1)+12(21)\frac{1}{2} \ln (\sqrt{2} + 1) + \frac{1}{2} (\sqrt{2} - 1)


Key Formulas or Methods Used

  • Integral of Secant: secθ,dθ=lnsecθ+tanθ\int \sec \theta , d\theta = \ln |\sec \theta + \tan \theta|

  • Integral of Secant Tangent: secθtanθ,dθ=secθ\int \sec \theta \tan \theta , d\theta = \sec \theta


Summary of Steps

  1. Simplify the integrand using trigonometric identities.
  2. Break the integral into two separate parts.
  3. Simplify each integral:
    • secθ,dθ\int \sec \theta , d\theta
    • secθtanθ,dθ\int \sec \theta \tan \theta , d\theta
  4. Apply the limits of integration from 0 to π4\frac{\pi}{4}.
  5. Combine the results to get the final answer: 12ln(2+1)+12(21)\frac{1}{2} \ln (\sqrt{2} + 1) + \frac{1}{2} (\sqrt{2} - 1)