Question Statement
Evaluate the integral:
∫06πcos3θ,dθ
Background and Explanation
This problem involves integrating a trigonometric function, specifically cos3θ. To simplify the integration, we can use the identity cos2θ=1−sin2θ, which will allow us to express the integrand in a form that is easier to work with. Understanding basic trigonometric identities and integration techniques, such as the integration of powers of sine and cosine, is necessary here.
Solution
-
Rewrite the Expression:
Start by breaking cos3θ into cos2θ⋅cosθ:
∫06πcos3θ,dθ=∫06πcos2θ⋅cosθ,dθ
Use the identity cos2θ=1−sin2θ to simplify:
=∫06π(1−sin2θ)cosθ,dθ
-
Split the Integral:
Distribute cosθ over the terms inside the parentheses:
=∫06πcosθ,dθ−∫06πsin2θ⋅cosθ,dθ
-
Integrate the First Term:
The integral of cosθ is straightforward:
∫cosθ,dθ=sinθ
So, evaluating from 0 to 6π:
sin(6π)−sin(0)=21−0=21
-
Integrate the Second Term:
For sin2θ⋅cosθ, use substitution:
Let u=sinθ, so du=cosθ,dθ. The limits change accordingly:
- When θ=0, u=0
- When θ=6π, u=sin(6π)=21
The integral becomes:
∫06πsin2θ⋅cosθ,dθ=∫021u2,du
The integral of u2 is:
∫u2,du=3u3
Evaluating from 0 to 21:
31[(21)3−03]=31×81=241
-
Combine the Results:
Now, combine the two terms:
21−241
Simplifying:
2412−241=2411
-
Trigonometric Identity:
cos2θ=1−sin2θ
-
Basic Integration:
∫cosθ,dθ=sinθ
-
Substitution Method:
When dealing with sin2θ⋅cosθ, use substitution u=sinθ to simplify the integral.
Summary of Steps
- Use the identity cos2θ=1−sin2θ to simplify the integral.
- Split the integral into two parts.
- Integrate cosθ directly.
- Use substitution to integrate sin2θ⋅cosθ.
- Combine the results to get the final answer:
2411