Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-16

Question Statement

Evaluate the integral: 0π6cos3θ,dθ\int_{0}^{\frac{\pi}{6}} \cos^3 \theta , d\theta


Background and Explanation

This problem involves integrating a trigonometric function, specifically cos3θ\cos^3 \theta. To simplify the integration, we can use the identity cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta, which will allow us to express the integrand in a form that is easier to work with. Understanding basic trigonometric identities and integration techniques, such as the integration of powers of sine and cosine, is necessary here.


Solution

  1. Rewrite the Expression:

    Start by breaking cos3θ\cos^3 \theta into cos2θcosθ\cos^2 \theta \cdot \cos \theta: 0π6cos3θ,dθ=0π6cos2θcosθ,dθ\int_{0}^{\frac{\pi}{6}} \cos^3 \theta , d\theta = \int_{0}^{\frac{\pi}{6}} \cos^2 \theta \cdot \cos \theta , d\theta

    Use the identity cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta to simplify: =0π6(1sin2θ)cosθ,dθ= \int_{0}^{\frac{\pi}{6}} (1 - \sin^2 \theta) \cos \theta , d\theta

  2. Split the Integral:

    Distribute cosθ\cos \theta over the terms inside the parentheses: =0π6cosθ,dθ0π6sin2θcosθ,dθ= \int_{0}^{\frac{\pi}{6}} \cos \theta , d\theta - \int_{0}^{\frac{\pi}{6}} \sin^2 \theta \cdot \cos \theta , d\theta

  3. Integrate the First Term:

    The integral of cosθ\cos \theta is straightforward: cosθ,dθ=sinθ\int \cos \theta , d\theta = \sin \theta

    So, evaluating from 00 to π6\frac{\pi}{6}: sin(π6)sin(0)=120=12\sin \left(\frac{\pi}{6}\right) - \sin(0) = \frac{1}{2} - 0 = \frac{1}{2}

  4. Integrate the Second Term:

    For sin2θcosθ\sin^2 \theta \cdot \cos \theta, use substitution: Let u=sinθu = \sin \theta, so du=cosθ,dθdu = \cos \theta , d\theta. The limits change accordingly:

    • When θ=0\theta = 0, u=0u = 0
    • When θ=π6\theta = \frac{\pi}{6}, u=sin(π6)=12u = \sin \left(\frac{\pi}{6}\right) = \frac{1}{2}

    The integral becomes: 0π6sin2θcosθ,dθ=012u2,du\int_{0}^{\frac{\pi}{6}} \sin^2 \theta \cdot \cos \theta , d\theta = \int_{0}^{\frac{1}{2}} u^2 , du

    The integral of u2u^2 is: u2,du=u33\int u^2 , du = \frac{u^3}{3}

    Evaluating from 00 to 12\frac{1}{2}: 13[(12)303]=13×18=124\frac{1}{3} \left[\left(\frac{1}{2}\right)^3 - 0^3\right] = \frac{1}{3} \times \frac{1}{8} = \frac{1}{24}

  5. Combine the Results:

    Now, combine the two terms: 12124\frac{1}{2} - \frac{1}{24}

    Simplifying: 1224124=1124\frac{12}{24} - \frac{1}{24} = \frac{11}{24}


Key Formulas or Methods Used

  • Trigonometric Identity: cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta

  • Basic Integration: cosθ,dθ=sinθ\int \cos \theta , d\theta = \sin \theta

  • Substitution Method: When dealing with sin2θcosθ\sin^2 \theta \cdot \cos \theta, use substitution u=sinθu = \sin \theta to simplify the integral.


Summary of Steps

  1. Use the identity cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta to simplify the integral.
  2. Split the integral into two parts.
  3. Integrate cosθ\cos \theta directly.
  4. Use substitution to integrate sin2θcosθ\sin^2 \theta \cdot \cos \theta.
  5. Combine the results to get the final answer: 1124\frac{11}{24}