Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-18

Question Statement

Evaluate the integral:

∫0Ο€4cos⁑4t,dt\int_{0}^{\frac{\pi}{4}} \cos^4 t , dt

Background and Explanation

To solve this integral, we need to use trigonometric identities and techniques such as expanding powers of cosine and applying standard integrals for trigonometric functions. A key identity that can simplify this problem is the double angle formula and further expansion of trigonometric powers.


Solution

We begin by expanding the given integral. We use the identity for cos⁑4t\cos^4 t and express it as:

cos⁑4t=(2cos⁑2t)(2cos⁑2t)\cos^4 t = \left( 2 \cos^2 t \right) \left( 2 \cos^2 t \right)

Now, we apply the identity cos⁑2t=1+cos⁑2t2\cos^2 t = \frac{1 + \cos 2t}{2} to each term:

=14∫0Ο€4(1+cos⁑2t)2,dt= \frac{1}{4} \int_{0}^{\frac{\pi}{4}} (1 + \cos 2t)^2 , dt

Now, expand the square:

=14∫0Ο€4(1+2cos⁑2t+cos⁑22t),dt= \frac{1}{4} \int_{0}^{\frac{\pi}{4}} \left( 1 + 2 \cos 2t + \cos^2 2t \right) , dt

We can now split the integral into three parts:

=14[∫0Ο€41,dt+2∫0Ο€4cos⁑2t,dt+∫0Ο€4cos⁑22t,dt]= \frac{1}{4} \left[ \int_{0}^{\frac{\pi}{4}} 1 , dt + 2 \int_{0}^{\frac{\pi}{4}} \cos 2t , dt + \int_{0}^{\frac{\pi}{4}} \cos^2 2t , dt \right]

For the second and third terms, use the identity for cos⁑2x=1+cos⁑2x2\cos^2 x = \frac{1 + \cos 2x}{2} to handle cos⁑22t\cos^2 2t:

=14[∫0Ο€41,dt+2∫0Ο€4cos⁑2t,dt+12∫0Ο€4(1+cos⁑4t),dt]= \frac{1}{4} \left[ \int_{0}^{\frac{\pi}{4}} 1 , dt + 2 \int_{0}^{\frac{\pi}{4}} \cos 2t , dt + \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \left( 1 + \cos 4t \right) , dt \right]

Now, we compute each integral individually.

  1. Integral of 1:
∫0Ο€41,dt=Ο€4\int_{0}^{\frac{\pi}{4}} 1 , dt = \frac{\pi}{4}
  1. Integral of cos⁑2t\cos 2t:
∫0Ο€4cos⁑2t,dt=sin⁑2t2∣0Ο€4=sin⁑π22βˆ’sin⁑02=12\int_{0}^{\frac{\pi}{4}} \cos 2t , dt = \frac{\sin 2t}{2} \Big|_0^{\frac{\pi}{4}} = \frac{\sin \frac{\pi}{2}}{2} - \frac{\sin 0}{2} = \frac{1}{2}
  1. Integral of cos⁑22t\cos^2 2t:

For cos⁑22t\cos^2 2t, we use the identity and break it down:

∫0Ο€4cos⁑22t,dt=12∫0Ο€4(1+cos⁑4t),dt\int_{0}^{\frac{\pi}{4}} \cos^2 2t , dt = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos 4t) , dt

Now, split this integral:

  • Integral of 1:
∫0Ο€41,dt=Ο€4\int_{0}^{\frac{\pi}{4}} 1 , dt = \frac{\pi}{4}
  • Integral of cos⁑4t\cos 4t:
∫0Ο€4cos⁑4t,dt=sin⁑4t4∣0Ο€4=sin⁑π4βˆ’sin⁑04=0\int_{0}^{\frac{\pi}{4}} \cos 4t , dt = \frac{\sin 4t}{4} \Big|_0^{\frac{\pi}{4}} = \frac{\sin \pi}{4} - \frac{\sin 0}{4} = 0

Thus:

12(Ο€4+0)=Ο€8\frac{1}{2} \left( \frac{\pi}{4} + 0 \right) = \frac{\pi}{8}

Now, putting everything together:

14[Ο€4+2Γ—12+Ο€8]\frac{1}{4} \left[ \frac{\pi}{4} + 2 \times \frac{1}{2} + \frac{\pi}{8} \right]

Simplify:

=14[Ο€4+Ο€4+Ο€8+1]=14[2Ο€4+Ο€8+1]=14[3Ο€8+1]= \frac{1}{4} \left[ \frac{\pi}{4} + \frac{\pi}{4} + \frac{\pi}{8} + 1 \right] = \frac{1}{4} \left[ \frac{2\pi}{4} + \frac{\pi}{8} + 1 \right] = \frac{1}{4} \left[ \frac{3\pi}{8} + 1 \right]

Finally:

=3Ο€+832= \frac{3\pi + 8}{32}

Key Formulas or Methods Used

  • Trigonometric identity: cos⁑2t=1+cos⁑2t2\cos^2 t = \frac{1 + \cos 2t}{2}
  • Standard integrals:
    • ∫cos⁑x,dx=sin⁑x\int \cos x , dx = \sin x
    • ∫1,dx=x\int 1 , dx = x

Summary of Steps

  1. Expand cos⁑4t\cos^4 t using trigonometric identities.
  2. Break the integral into simpler parts.
  3. Use trigonometric identities for cos⁑2t\cos^2 t and cos⁑22t\cos^2 2t.
  4. Compute each integral separately.
  5. Combine the results and simplify to get the final answer:
3Ο€+832\frac{3\pi + 8}{32}